336 research outputs found

    Biomarker Discovery by Novel Sensors Based on Nanoproteomics Approaches

    Get PDF
    During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput techniques with novel nanosensors. In the present review, we focus on the study of label-based and label-free detection systems, as well as nanotechnology approaches, indicating their advantages and applications in biomarker discovery. In addition, several disease biomarkers are shown in order to display the clinical importance of the improvement of sensitivity and selectivity by using nanoproteomics approaches as novel sensors

    Aptamer-based field-effect biosensor for tenofovir detection

    Get PDF
    During medical treatment it is critical to maintain the circulatory concentration of drugs within their therapeutic range. A novel biosensor is presented in this work to address the lack of a reliable point-of-care drug monitoring system in the market. The biosensor incorporates high selectivity and sensitivity by integrating aptamers as the recognition element and field-effect transistors as the signal transducer. The drug tenofovir was used as a model small molecule. The biointerface of the sensor is a binary self-assembled monolayer of specific thiolated aptamer and 6-mercapto-1-hexanol (MCH), whose ratio was optimized by electrochemical impedance spectroscopy measurements to enhance the sensitivity towards the specific target. Surface plasmon resonance, performed under different buffer conditions, shows optimum specific and little non-specific binding in phosphate buffered saline. The dose-response behavior of the field-effect biosensor presents a linear range between 1 nM and 100 nM of tenofovir and a limit of detection of 1.2 nM. Two non-specific drugs and one non-specific aptamer, tested as stringent control candidates, caused negligible responses. The applications were successfully extended to the detection of the drug in human serum. As demonstrated by impedance measurements, the aptamer-based sensors can be used for real-time drug monitoring

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Implantable Multi-panel Platform for Continuous Monitoring of Exogenous and Endogenous Metabolites for Applications in Personalized Medicine

    Get PDF
    Nowadays, scientific advances are leading to the discovery of newer, better, more targeted treatments that will improve the human health. However, despite the promising results and the major advantages in treatments offered to patients, these personalized medical treatments are limited to few cases. Translational medicine research with animals is needed to find innovative, safe and life-saving solutions for patients, especially in drug development. Although technological improvements may lead one day to the end of animal testing, today those strategies are not sufficient, due to the complexity of living organisms. The living conditions of these animals are of primary importance because high stress levels can affect the experimental results. In this respect, the monitoring of the animals in a small living space by means of a fully implantable device, can contribute to minimize the human intervention, increasing the comfort for the animals. The objective of this thesis is the design and characterization of a fully implantable biosensor array for the real-time detection of endogenous and exogenous metabolites, for the monitoring of small caged animals in drug development, and for future applications in personalized medicine. The fully implantable device consists of: a passive sensing platform consisting of an array of four independent electrochemical biosensors, together with a pH sensor and a temperature sensor for the optimization of the sensing performances in different physiological conditions; integrated circuits capable of performing multiple electrochemical measurements; a coil for remote powering of the integrated circuit and the short-range data transmission to an external device; a membrane packaging ensuring measurements with high signal-to-noise ratio, biocompatibility and selectivity against possible interfering molecules in biological fluids. ⢠In vitro monitoring of four anti-cancer drugs and an anti-inflammatory drug within the pharmacological ranges in undiluted human serum; ⢠Demonstration of the in vitro functionality of the complete system, showing that the external powering system correctly operate the device, and receive the data from the sensors; ⢠In vivo biocompatibility tests of the packaging, showing after 30 days a significant reduction of the inflammatory response in time, suggesting normal host recovery; ⢠In vivo continuous monitoring of an anti-inflammatory drug, demonstrating the proof of-concept of the system for future personalized medicine applications

    Quantum dots-amplified electrochemical cytochrome P450 phenotype sensor for tamoxifen, a breast cancer drug

    Get PDF
    Philosophiae Doctor - PhDBreast cancer is regarded as the most common cancer in South Africa and its rate of occurrence is increasing. About one in every 31 South African women are at the risk of developing breast cancer and early diagnosis and treatment guarantee 90% survival rate. Tamoxifen is the drugs of choice for the treatment of all stages of breast cancer. The drug binds with estrogen receptor (ER) to minimize the transcription of estrogen dependent genes. However, nearly 50% of ER-positive breast cancer patients either become resistant or fail to respond to tamoxifen resulting in a serious clinical challenge in breast cancer management. The Grand Health Challenges of South Africa includes the development of cost effective diagnostic systems suitable for early detection of diseases and drug resistivity for timely invention and better patient management

    Development of Copper Selenide Quantum Dots-Based Therapeutic Drug Monitoring Biosensors for Toremifene - A Breast Cancer Drug

    Get PDF
    Magister Scientiae - MSc (Chemistry)With rising knowledge of the effects on plasma concentration caused by allelic variations in the cytochrome P450 genes and other metabolic factors such as drug-drug or drug-food interactions, more attention is paid to the possibility of therapeutic drug monitoring (TDM). Thus, there is a rising demand for quick, low-cost and efficient equipment for drug targeting. For such devices, electrochemical biosensing techniques serve as a promising alternative. Toremifene is the chlorinated analogue of tamoxifen and is used for adjuvant antiestrogenic treatment for breast cancer and could serve as a candidate for TDM treatments. In this work, a proof of concept enzymatic electrochemical biosensor is developed for the detection of toremifene in aqueous solution. The biosensor uses water-soluble 6-mercaptopropinoic acid capped copper selenide quantum dots (6MHACuSe QDs) conjugated to a cysteamine selfassembled monolayer on a gold electrode. The 6MHACuSe QDs where further conjugated with CYP2C9 enzyme, which has shown to have a major part in the hydroxylation of toremifene (TOR) to form 4-hydroxytoremifene (4OH-TOR). The 6MHACuSe QDs where synthesized using a facile and rapid aqueous route. Results from synthesis of 3-mercaptiorproionic acid (3MPA) and mercaptosuccinic acid (MSA) capped copper selenide QDs, are also presented in the study and compared to the results of the 6MHA capped copper selenide QDs. X-ray diffraction analysis (XRD) confirmed formation of copper selenide species of nonstoichiometric form Cu2-xSe (for the 6MHA and 3MPA capped CuSe QDs) and ?-CuSe stoichiometric form (for the MSA capped CuSe QDs)

    Development of nanobiosensors for phenolic endocrine disrupting compounds and anti- tuberculosis drugs

    Get PDF
    >Magister Scientiae - MScTuberculosis still remains one of the world’s killer diseases. Pyrazinamide (PZA) is one of the most commonly prescribed anti-tuberculosis (anti-TB) drugs due to its ability to significantly shorten the TB treatment period. However, excess PZA in the body caused hepatotoxicity and liver damage. This, together with the resistance of the bacteria to treatment drugs, poor medication and inappropriate dosing, contribute significantly to the high incidents of TB deaths and diseases (such as liver damage). This, therefore, calls for new methods for ensuring reliable dosing of the drug, which will differ from person to person due to inter-individual differences in drug metabolism. A novel biosensor system for monitoring the metabolism of PZA was prepared with a nanocomposite of multi-walled carbon nanotubes (MWCNTs), polyaniline (PANI) and cytochrome P450 2E1 (CYP2E1) electrochemically deposited on a glassy carbon electrode (GCE). The nanocomposite biosensor system exhibited enhanced electro-activity that is attributed to the catalytic effect of the incorporated MWCNTs. The biosensor had a sensitivity of 7.80 μA/ μg mL-1 PZA and a dynamic linear range (DLR) of 4.92 – 160 ng/mL PZA. Bisphenol A (BPA) is a hormone-disrupting chemical used in production of epoxy resins and polycarbonates, which produce various products used on a daily basis. However, BPA can leach out of plastic during normal use and cause health effects such as cancer or disrupt the endocrine system. Moreover, BPA has also been proven to degrade from the containers in landfills and accumulate in groundwater and streams, thereby, polluting the environment while destroying aquatic organisms. Therefore, this also calls for new selective and sensitive methods for the monitoring of BPA. A novel biosensor system for monitoring the oxidation of BPA was prepared from a nanocomposite of polyaniline, polymethyl methacrylate and titanium dioxide nanoparticles, also electrochemically deposited on the GCE. Biosensor fabrication was conducted by immobilization of the enzyme manganese peroxidase (MnP) iii onto the nanocomposite film. The nanobiosensor also revealed enhanced electro activity, attributed to the incorporation of TiO2 nanoparticles. The biosensor system had a sensitivity of 0.3 μA/nM and a detection limit of 0.12 nM. This detection limit falls within the range of the allowed daily intake of BPA as recommended by the Food and Drug Administration (FDA, USA) and other regulatory bodies

    Do Carbon Nanotubes Contribute to Electrochemical Biosensing?

    Get PDF
    Carbon nanotubes have been attracting a lot of interest as electron transfer mediators to enhance electrochemical biosensing. The main reason behind this is usually recognized in terms of augmented electrochemical active surface area. The aim of this paper is to review other phenomena that occur at the electrochemical interface. Three distinct features of these phenomena mainly appear in electrochemical biosensing. We have applied the Cottrell, Randle-Sevčick, and Nernst effects to address these features. By using these features, several electrochemical biosensing systems are investigated. The differences among the proposed systems are presented and analyzed in light of these effects. We finally demonstrate that carbon nanotubes may induce completely opposite effects when dealing with different biosensing systems. This paper also shows that even seemingly small differences (e.g., changing metabolite as detected by the same enzyme) might result in opposite effects on the same carbon nanotube based sensor. Nevertheless, it is shown that carbon nanotubes, in some cases, confirm their exceptional nature in enhancing the sensor performance by orders of magnitude. Sensitivity increases from 87 ± 62 to 3718 ± 73 nA/μM ×cm2 and detection limit decreases from 7.5 ± 5.3 to 0,084 ± 0.002 μM in case of cyclophosphamide detected by the cytochromes P450 3A4
    • …
    corecore