7,032 research outputs found

    Examination of the coatings of coronary stents

    Get PDF
    In our study the main properties of coated coronary stents are shown, such as foreshortening, recoil, surface features and failures and the expansion properties. The types and the effects of active and passive coatings are introduced. The results of our examinations with different coated coronary stents are shown as well

    High-overtone Bulk-Acoustic Resonator gravimetric sensitivity: towards wideband acoustic spectroscopy

    Full text link
    In the context of direct detection sensors with compact dimensions, we investigate the gravimetric sensitivity of High-overtone Bulk Acoustic Resonators, through modeling of their acoustic characteristics and experiment. The high frequency characterizing such devices is expected to induce a significant effect when the acoustic field boundary conditions are modified by a thin adlayer. Furthermore, the multimode spectral characteristics is considered for wideband acoustic spectroscopy of the adlayer, once the gravimetric sensitivity dependence of the various overtones is established. Finally, means of improving the gravimetric sensitivity by confining the acoustic field in a low acoustic-impedance layer is theoretically established.Comment: 9 pages, 10 figures in J. Appl. Phys. 201

    Non-Linear Electro-Ultrasonic Spectroscopy of Resistive Materials

    Get PDF
    Elektro-ultrazvuková spektroskopie je založena na interakci dvou signálů, elektrického střídavého signálu s frekvencí fE a ultrazvukového signálu s frekvencí fU. Ultrazvukový signál mění vzdálenost mezi vodivými zrny ve vzorku a tím mění jeho celkový elektrický odpor R. Změna odporu R je proměnná s frekvencí ultrazvukového signálu fU. Vzorek, který obsahuje mnoho defektů ve své struktuře, vykazuje vysokou změnu odporu R v porovnání se vzorkem bez defektů při stejné hodnotě ultrazvukového a elektrického signálu. V disertační práci je popsána elektro-ultrazvuková metoda na tlustovrstvých rezistorech, hořčíkových slitinách, monokrystalech Si a CdTe, varistorech a také jeden z prvních pokusů aplikace elektro-ultrazvukové spektroskopie na horninové vzorky a tak diagnostikovat jejich stav poškození. V našem případě byl proměřen vzorek žuly. Jelikož se jedná o nedestruktivní metodu testování, tak má tato metoda velmi perspektivní budoucnost. Tato metoda je citlivá na všechny defekty ve vzorku. Její výhodou je, že se měří velikost signálu ne frekvenci danou rozdílem nebo součtem budících frekvencí fE a fU a tím se dá dosáhnout vysoké citlivosti. V mém případě byl vždy měřen signál na rozdílové frekvenci fi = fE-fU.All materials contain cracks and micro-cracks in structure. My aim is to detect these cracks. Electro-Ultrasonic spectroscopy is a non–destructive testing method which describes quality and reliability of a tested sample. Tested sample is excited by the harmonic electrical signal of frequency fE and ultrasonic signal of frequency fU. A new harmonic signal of the frequency fi is created as a result of electrical resistance change due to the variation of the crack effective area by ultrasonic excitation. The intermodulation frequency fi is given by the subtraction of excitation frequencies fE and fU. Amplitude of the intermodulation signal at frequency fi is influenced by the electric current, which flows through the sample structure, and resistance change, which is ultrasonically induced due to the defects and unhomogeneities in a sample structure. High sensitivity of this method comes from the fact that the frequencies of exciting sources and measured signal are on different frequencies. The signal-to-noise ratio and high sensitivity for NDT analyses are based on the application of electrical filters for attenuation of exciting signals in signal preprocessing. Experimental verification of this method was performed on various samples such as magnesium alloy, aluminium and dural plates, both without and with cracks, varisotors, MOS FET transistor, rock samples, monocrystals Si and CdTe. This work presents a new non-destructive testing method of solids with metallic electrical conductivity, monocrystals, resistive materials and electronic devices.

    Reduced Recombination and Capacitor-like Charge Buildup in an Organic Heterojunction

    Get PDF
    Organic photovoltaic (OPV) efficiencies continue to rise, raising their prospects for solar energy conversion. However, researchers have long considered how to suppress the loss of free carriers by recombination—poor diffusion and significant Coulombic attraction can cause electrons and holes to encounter each other at interfaces close to where they were photogenerated. Using femtosecond transient spectroscopies, we report the nanosecond grow-in of a large transient 20 Stark effect, caused by nanoscale electric fields of ~487 kV/cm between photogenerated free carriers in the device active layer. We find that particular morphologies of the active layer lead to an energetic cascade for charge carriers, suppressing pathways to recombination, which is ~2000 times less than predicted by Langevin theory. This in turn leads to the build-up of electric charge in donor and acceptor domains—away from the interface—resistant to bimolecular recombination. 25 Interestingly, this signal is only experimentally obvious in thick films, due to the different scaling of electro-absorption and photo-induced absorption signals in transient absorption spectroscopy. Rather than inhibiting device performance, we show that devices up to 600 nm thick maintain efficiencies of > 8 % because domains can afford much higher carrier densities. These observations suggest that with particular nanoscale morphologies, the bulk heterojunction can go beyond its established role in charge photogeneration, and can act as a capacitor, where adjacent free charges are held away from the interface and can be protected from bimolecular recombination

    One-pot electrodeposition of multilayered 3D PtNi/polymer nanocomposite. H2O2 determination in aerosol phase

    Get PDF
    In this work, 3D-structured nanocomposites were synthesized in one pot by electrochemical deposition of alternating layers of an azo type polymer (polyazure-A) with platinum and nickel nanoparticles. The hybrid PtNi/poly(AzA) film was electrochemically deposited on screen-printed carbon electrodes by layer-by-layer assembly as a function of the number of cyclic voltammograms for electrodeposition of the conducting polymer and the electrode potential applied for electro-reduction of the metal salts. The physicochemical characteristics of the resulting films were studied using electrochemical and microscopic techniques. The 3D molecular nanoarchitecture presents a hollow porous structure dependent on the electrode potential set for the electro-reduction of Pt and Ni nanoparticles. The electrochemical sensor was validated in terms of sensitivity, limit of detection, stability and repeatability, exhibiting a highly sensitive H2O2 detection, with LoD 68.5 nM (S/N = 3) at 0.05 V vs. Ag-SPCE for the electrode modified with 20 cycles for the conducting polymer electrodeposition and −2.0 V for metal ions reduction. The aim of this work also included the outcome of the electrochemical sensor after incorporating the room temperature ionic liquid 1‑butyl‑2,3-dimethylimidazolium tetrafluoroborate within the PtNi/poly(AzA) film, which notably improved the analytical parameters of the system, with LoD 14.5 nM at the same potential. Therefore, as proof of concept, the PtNi/poly(AzA) film-based electrode was explored towards the suitability of an electrochemical sensor for the determination of hydrogen peroxide in aerosol phase. The outstanding features of the PtNi/poly(AzA) film-based electrode modified with the aforementioned ionic liquid allowed for the continuous monitoring of H2O2 in an aerosol stream generated with an ultrasonic diffuser at the low applied potential of 0.05 V. In addition, monitoring H2O2 samples through a series of ON/OFF switches for over 3 h, the sensor provided a fast and reproducible response.Grants PID2019–106468RB-I00 and PID2019–108136RB-C32 funded by MCIN/AEI/10.13039/501100011033 and grant 2022‐GRIN‐34199 funded by the own research plan of the UCLM and co-financed by the European Fund for Regional Development (FEDER). RJP is the beneficiary of a postdoctoral contract associated with the first indicated project from the MCIN/AEI. This research was also partially funded by the Next-Generation EU funding (Zambrano21–10, AGB)

    Chemical mechanical polishing of thin film diamond

    Get PDF
    The demonstration that Nanocrystalline Diamond (NCD) can retain the superior Young's modulus (1,100 GPa) of single crystal diamond twinned with its ability to be grown at low temperatures (<450 {\deg}C) has driven a revival into the growth and applications of NCD thin films. However, owing to the competitive growth of crystals the resulting film has a roughness that evolves with film thickness, preventing NCD films from reaching their full potential in devices where a smooth film is required. To reduce this roughness, films have been polished using Chemical Mechanical Polishing (CMP). A Logitech Tribo CMP tool equipped with a polyurethane/polyester polishing cloth and an alkaline colloidal silica polishing fluid has been used to polish NCD films. The resulting films have been characterised with Atomic Force Microscopy, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy. Root mean square roughness values have been reduced from 18.3 nm to 1.7 nm over 25 {\mu}m2^2, with roughness values as low as 0.42 nm over ~ 0.25 {\mu}m2^2. A polishing mechanism of wet oxidation of the surface, attachment of silica particles and subsequent shearing away of carbon has also been proposed.Comment: 6 pages, 6 figure

    Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry

    Get PDF
    We compare ultrasonic welding (UW) and thermal bonding (TB) for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM) microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW), as well as pressure and temperature (for TB), were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education
    corecore