6,439 research outputs found

    When self-consistency makes a difference

    Get PDF
    Compound semiconductor power RF and microwave device modeling requires, in many cases, the use of selfconsistent electrothermal equivalent circuits. The slow thermal dynamics and the thermal nonlinearity should be accurately included in the model; otherwise, some response features subtly related to the detailed frequency behavior of the slow thermal dynamics would be inaccurately reproduced or completely distorted. In this contribution we show two examples, concerning current collapse in HBTs and modeling of IMPs in GaN HEMTs. Accurate thermal modeling is proved to be be made compatible with circuit-oriented CAD tools through a proper choice of system-level approximations; in the discussion we exploit a Wiener approach, but of course the strategy should be tailored to the specific problem under consideratio

    Effective electrothermal analysis of electronic devices and systems with parameterized macromodeling

    Get PDF
    We propose a parameterized macromodeling methodology to effectively and accurately carry out dynamic electrothermal (ET) simulations of electronic components and systems, while taking into account the influence of key design parameters on the system behavior. In order to improve the accuracy and to reduce the number of computationally expensive thermal simulations needed for the macromodel generation, a decomposition of the frequency-domain data samples of the thermal impedance matrix is proposed. The approach is applied to study the impact of layout variations on the dynamic ET behavior of a state-of-the-art 8-finger AlGaN/GaN high-electron mobility transistor grown on a SiC substrate. The simulation results confirm the high accuracy and computational gain obtained using parameterized macromodels instead of a standard method based on iterative complete numerical analysis

    Design and Modeling of Micromechanical GaAs based Hot Plate for Gas Sensors

    Get PDF
    For modern Gas sensors, high sensitivity and low power are expected. This paper discusses design, simulation and fabrication of new Micromachined Thermal Converters (MTCs) based on GaAs developed for Gas sensors. Metal oxide gas sensors generally work in high temperature mode that is required for chemical reactions to be performed between molecules of the specified gas and the surface of sensing material. There is a low power consumption required to obtain the operation temperatures in the range of 200 to 500 oC. High thermal isolation of these devices solves consumption problem and can be made by designing of free standing micromechanical hot plates. Mechanical stability and a fast thermal response are especially significant parameters that can not be neglected. These characteristics can be achieved with new concept of GaAs thermal converter.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    A Fast Electro-Thermal Co-Simulation Modeling Approach for SiC Power MOSFETs

    Get PDF

    Accurate Time-segmented Loss Model for SiC MOSFETs in Electro-thermal Multi-Rate Simulation

    Full text link
    Compared with silicon (Si) power devices, Silicon carbide (SiC) devices have the advantages of fast switching speed and low on-resistance. However, the effects of non-ideal characteristics of SiC MOSFETs and stray parameters (especially parasitic inductance) on switching losses need to be further evaluated. In this paper, a transient loss model based on SiC MOSFET and SiC Schottky barrier diode (SBD) switching pairs is proposed. The transient process analysis is simplified by time segmentation of the transient process of power switching devices. The electro-thermal simulation calculates the junction temperature and updates the temperature-related parameters with the proposed loss model and the thermal network model. A multi-rate data exchange strategy is proposed to solve the problem of disparity in timescales between circuit simulation and thermal network simulation. The CREE CMF20120D SiC MOSFET device is used for the experimental verification. The experimental results verify the accuracy of the model which provides guidance for the circuit design of SiC MOSFETs. All the parameters of the loss model can be extracted from the datasheet, which is practical in power electronics design

    Compact electrothermal reliability modeling and experimental characterization of bipolar latchup in SiC and CoolMOS power MOSFETs

    Get PDF
    In this paper, a compact dynamic and fully coupled electrothermal model for parasitic BJT latchup is presented and validated by measurements. The model can be used to enhance the reliability of the latest generation of commercially available power devices. BJT latchup can be triggered by body-diode reverse-recovery hard commutation with high dV/dt or from avalanche conduction during unclamped inductive switching. In the case of body-diode reverse recovery, the base current that initiates BJT latchup is calculated from the solution of the ambipolar diffusion equation describing the minority carrier distribution in the antiparallel p-i-n body diode. For hard commutation with high dV/dt, the displacement current of the drain-body charging capacitance is critical for BJT latchup, whereas for avalanche conduction, the base current is calculated from impact ionization. The parasitic BJT is implemented in Simulink using the Ebers-Moll model and the temperature is calculated using a thermal network matched to the transient thermal impedance characteristic of the devices. This model has been applied to CoolMOS and SiC MOSFETs. Measurements show that the model correctly predicts BJT latchup during reverse recovery as a function of forward-current density and temperature. The model presented, when calibrated correctly by device manufacturers and applications engineers, is capable of benchmarking the robustness of power MOSFETs

    Modular and reconfigurable transient modeling and simulation design support tool for MEE/MEA power systems

    Get PDF
    There is a well-recognised need for robust simulation tools to support the design and evaluation of future More-Electric Engine and Aircraft (MEE/MEA) design concepts. Design options for these systems are increasingly complex, and normally include multiple power electronics converter topologies and machine drive units. In order to identify the most promising set of system configurations, a large number of technology variants need to be rapidly evaluated. This paper will describe a method of MEE/MEA system design with the use of a newly developed transient modeling, simulation and testing tool aimed at accelerating the identification process of optimal components, testing novel technologies and finding key solutions at an early development stage. The developed tool is a Matlab/Simulink library consisting of functional sub-system units, which can be rapidly integrated to build complex system architecture models

    THERMAL AND ELECTRO-THERMAL MODELING OF COMPONENTS AND SYSTEMS: A REVIEW OF THE RESEARCH AT THE UNIVERSITY OF PARMA

    Get PDF
    This paper reviews the activity carried out at the Department of Information Engineering of the University of Parma, Italy, in the field of thermal and electro-thermal modeling of devices, device and package assemblies, circuits, and systems encompassing active boards and heat-sinking elements. This activity includes: (i) Finite-Element 3D simulation for the thermal analysis of a hierarchy of structures ranging from bare device dies to complex systems including active and passive devices, boards, metallizations, and air- and water-cooled heat-sinks, and (ii) Lumped-Element thermal or electro-thermal models of bare and packaged devices, ranging from purely empirical to strictly physics- and geometry-based
    corecore