52 research outputs found

    Peristaltic transport of bi-viscosity fluids through a curved tube : a mathematical model for intestinal flow

    Get PDF
    The human intestinal tract is a long curved tube constituting the final section of the digestive system in which nutrients and water are mostly absorbed. Motivated by the dynamics of chyme in the intestine, a mathematical model is developed to simulate the associated transport phenomena via peristaltic transport. Rheology of chyme is modelled using the Nakamura-Sawada bi-viscosity non-Newtonian formulation. The intestinal tract is considered as a curved tube geometric model. Low Reynolds number (creeping hydrodynamics) and long wavelength approximations are taken into consideration.Analytical solutions of the moving boundary value problem are derived for velocity field,pressure gradient and pressure rise. Streamline flow visualization is achieved with Mathematica symbolic software. Peristaltic pumping phenomenon and trapping of the bolus are also examined. The influence of curvature parameter, apparent viscosity coefficient (rheological parameter) and volumetric flow rate on flow characteristics is described. Validation of analytical solutions is achieved with a MAPLE17 numerical quadrature algorithm. The work is relevant to improving understanding of gastric hydrodynamics and provides a benchmark for further computational fluid dynamics (CFD) simulations

    Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects

    Get PDF
    Hybrid nanofluid free convection within a permeable media was presented with CVFEM (control volume finite element method) including magnetic effect. Momentum equations have been updated with adding non-Darcy model terms. Hybrid nanoparticles (Fe3O4+MWCNT) with a base fluid of water have been considered. Impacts of Darcy number, magnetic, radiation, and Rayleigh number on migration of nanomaterial were depicted. A numerical and graphical comparison is also presented to make sure that the present analysis is correct. From the graphical results it is found that radiation parameter and magnetic boosts the Nusselt number whereas the magnetic effect shows converse relation

    ADM solution for Cu/CuO –water viscoplastic nanofluid transient slip flow from a porous stretching sheet with entropy generation, convective wall temperature and radiative effects

    Get PDF
    A mathematical modelis presented for entropy generation in transient hydromagnetic flow of an electroconductive magnetic Casson (non-Newtonian) nanofluid over a porous stretching sheet in a permeable medium. The Cattaneo-Christov heat flux model is employed to simulate non-Fourier (thermal relaxation) effects. A Rosseland flux model is implemented to model radiative heat transfer. The Darcy model is employed for the porous media bulk drag effect. Momentum slip is also included to simulate non-adherence of the nanofluid at the wall. The transformed, dimensionless governing equations and boundary conditions (featuring velocity slip and convective temperature) characterizing the flow are solved with the Adomian Decomposition Method (ADM). Bejan’s entropy minimization generation method is employed. Cu-water and CuO-water nanofluids are considered. Extensive visualization of velocity, temperature and entropy generation number profiles is presented for variation in magnetic field parameter, unsteadiness parameter, Casson parameter, nanofluid volume fraction, permeability parameter, suction/injection parameter, radiative parameter, Biot number, relaxation time parameter, velocity slip parameter, Brinkman number (dissipation parameter), temperature ratio and Prandtl number. The evolution of skin friction and local Nusselt number (wall heat transfer rate) are also studied. The ADM computations are validated with simpler models from the literature. The solutions show that with elevation in volume fraction of nanoparticle and Brinkman number, the entropy generation magnitudes are increased. An increase in Darcy number also increases the skin friction and local Nusselt number. Increasing magnetic field, volume fraction, unsteadiness, thermal radiation, velocity slip, Casson parameters, Darcy and Biot numbers are all observed to boost temperatures. However, temperatures are reduced with increasing non-Fourier (thermal relaxation) parameter. Greater flow acceleration is achieved for CuO-water nanofluid compared with Cu-water nanofluid although the contrary response is computed in temperature distributions. The simulations are relevant to the high temperature manufacturing fluid dynamics of magnetic nanoliquids, smart coating systems etc

    Computational analysis of radiative heat transfer due to rotating tube in parabolic trough solar collectors with Darcy Forchheimer porous medium

    Get PDF
    This attempt numerically investigates the heat transfer in parabolic trough solar collectors due to the rotating tube for the hybrid nanofluid flow over the Riga surface with Darcy Forchheimer’s porous medium under the effect of solar radiation. The influences of viscous dissipation and Joule heating are also considered. Equations governing the fluid flow are non-dimensionalized by implementing appropriate similarity variables. The resulting non-dimensionalized ordinary differential equations are solved using the shooting technique with Adam Bashforth and Adam Moulten’s fourth-order numerical approach. The numerical outcomes for various influential physical parameters regarding the fluid velocity, temperature, Nusselt number, and entropy generation are presented in graphical form. It is observed that the thermal profile escalates with the higher values of Reynold’s number, modified magnetic field parameter, and Prandtl number. Also, the Nusselt number diminishes with augmenting values of the Eckert number, modified magnetic field parameter, Forchheimer number, and Darcy number. The optimization of heat transfer in parabolic trough collectors is essential to improve the performance of solar collectors. The concentrated solar power technology is adequate for storing radiation energy in higher amounts.Author U.F.-G. appreciates the support of the Government of the Basque Country, Grant N. ELKARTEK 22/85 and ELKARTEK 21/10. The research is supported by Researchers Supporting Project number (RSP2023R158), King Saud University, Riyadh, Saudi Arabia

    Computation of entropy generation in dissipative transient natural convective viscoelastic flow

    Get PDF
    Entropy generation is an important aspect of modern thermal polymer processing optimization. Many polymers exhibit strongly non-Newtonian effects and dissipation effects in thermal processing. Motivated by these aspects in this article a numerical analysis of the entropy generation with viscous dissipation effect in an unsteady flow of viscoelastic fluid from a vertical cylinder is presented. The Reiner-Rivlin physical model of grade two (second grade fluid) is employed which can envisage normal stress variations in polymeric flow-fields. Viscosity variation is included. The obtained governing equations are resolved using implicit finite difference method of Crank-Nicolson type with well imposed initial and boundary conditions. Key control parameters are the second-grade viscoelastic fluid parameter (β), viscosity variation parameter (γ) and viscous dissipation parameter (ε). Also, group parameter (BrΩ-1), Grashof number (Gr) and Prandtl number (Pr) are examined. Numerical solutions are presented for steady-state flow variables, temperature, time histories of friction, wall heat transfer rate, entropy and Bejan curves for distinct values of control parameters. The results specify that entropy generation decreases with augmenting values of β, γ and Gr. The converse trend is noticed with increasing Pr and BrΩ-1. Furthermore, the computations reveal that entropy and Bejan lines only occur close to the hot cylinder wall

    Selected papers of the "1st International Conference on Nanofluids (ICNf)"

    Get PDF
    This Special Issue of Energies has emerged as a result of the 1st International Conference on Nanofluids (https://icnf2019.com/), which was organized under the auspices of Nanouptake COST Action (Overcoming Barriers to Nanofluids Market Uptake, http://www.nanouptake.eu/) in Castelló (Spain), in June 2019. The foci of ICNf2019 were the production and the characterisation of nanofluids for different areas of applications in the energy fields, namely heat transfer, storage of thermal energy, boiling, and solar systems, as well as industrial applications and health and safety issues. The first conference edition on this topic gathered more than 200 participants from 45 different countries. More than 125 contributions were presented in the nine sections of the congress. Some selected authors were invited to send extended versions of their work to the Energies ICNf2019 Special Issue. After a careful review process, nine articles from six different countries were selected for compilation in this Special Issue: a total of seven full research papers and two reviews. These papers cover a broad range of fundamental and applied research aspects on nanofluid science and development, and reflect the current investigations, knowledge, and challenges encountered in the use of nanofluids for energy applications

    The 2016 oxide electronic materials and oxide interfaces roadmap

    Get PDF
    Lorenz, M. et al.Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide interfaces’. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements.This work has been partially supported by the TO-BE COST action MP1308. J F acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0496) and MAT2014-56063-C2-1R, and from the Catalan Government (2014 SGR 734). F.M.G. acknowledges support from MIUR through the PRIN 2010 Project ‘OXIDE’.Peer reviewe

    Conference Proceedings: 1st International Conference on Nanofluids (ICNf2019), 2nd European Symposium on Nanofluids (ESNf2019)

    Get PDF
    Conference proceedings of the 1st International Conference on Nanofluids (ICNf2019) and 2nd European Symposium on Nanofluids (ESNf2019), 26-28 June 2019 in Castelló (Spain), organized by Nanouptake Action (CA15119) and Universitat Jaume

    Partial Differential Equations in Applied Mathematics https://www.sciencedirect.com/journal/partial-differential-equations-in-applied- mathematics Analysis of unsteady thermo-solutal MoS2-EO Brinkman electro-conductive reactive nanofluid transport in a hybrid rotating Hall MHD generator

    Get PDF
    MHD rotating generators offer a plausible renewable energy mechanism. New designs are emerging in which nanotechnology is contributing. Such systems are increasingly deploying more complex functional fluid materials such as base fluids containing magnetic nanoparticles which constitute electromagnetic nanofluids and can be tuned to enhance efficiencies. Motivated by these developments, a mathematical model is presented for the combined effects of Hall current, heat source, chemical reaction and radiative flux on the unsteady rotating thermo-solutal magnetohydrodynamic transport of a Molybdenum disulphide (MoS2)-EO oil electroconductive Brinkman nanofluid to study the boundary layer characteristics in the vicinity of the side wall of an MHD generator system. The governing dimensional conservation equations are scaled using appropriate transformations into a system of dimensionless coupled partial differential equations. Under appropriate initial and boundary conditions, solutions are derived using the Laplace Transform Method (LTM) and complex variables. The physical impacts of the magnetic, nanoscale, thermal and species control parameters on primary and secondary velocity, temperature and concentration are visualized graphically. The judicious doping of the base fluid with MoS2 nanoparticles is shown to achieve superior thermal performance for MHD rotating energy generators
    • …
    corecore