7,752 research outputs found

    Challenges of Electrifying Medium and Heavy Duty Vehicles in California and How These Challenges Can Be Overcome

    Get PDF
    California is electrifying medium and heavy vehicles (vehicles weighing over 8,500 pounds) to reduce greenhouse gas emissions and provide environmental justice for disadvantaged communities. These vehicles are used for delivery, construction, refuse collection or long haul trucking. The three main challenges of electrification are infrastructure, policy and funding. To address these challenges, policy analysis was used to review California’s policies already in place for electrification of medium and heavy duty vehicles. Comparative analysis was used to look at policies in other countries and environmental programs for strategies to help electrification efforts. California faces a lack of infrastructure of medium and heavy duty electric vehicle chargers and high upfront costs. These costs can be decreased per vehicle with a larger volume of electric vehicles. California has many policies to help support adoption of medium and heavy duty electric vehicles, however they can be expanded by looking China’s program starting electrification in specific cities, Oslo, Norway’s involvement of local government and the state’s solar rollout for a market pull strategy. California has various funding opportunities but more sustained funding is needed to overcome the $195.06 billion funding deficit. To tackle challenges faced by electrification of medium and heavy vehicles in California, policy and funding can be coupled to support each other through mandates and partnerships. Emphasis can be placed on infrastructure and initiatives supporting disadvantaged communities. California can start electrification with delivery vehicles because they have the lowest infrastructure costs and provide opportunities for emission reductions and environmental justice across California

    Carbon Free Boston: Transportation Technical Report

    Get PDF
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Technical Summary; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical ReportOVERVIEW: Transportation connects Boston’s workers, residents and tourists to their livelihoods, health care, education, recreation, culture, and other aspects of life quality. In cities, transit access is a critical factor determining upward mobility. Yet many urban transportation systems, including Boston’s, underserve some populations along one or more of those dimensions. Boston has the opportunity and means to expand mobility access to all residents, and at the same time reduce GHG emissions from transportation. This requires the transformation of the automobile-centric system that is fueled predominantly by gasoline and diesel fuel. The near elimination of fossil fuels—combined with more transit, walking, and biking—will curtail air pollution and crashes, and dramatically reduce the public health impact of transportation. The City embarks on this transition from a position of strength. Boston is consistently ranked as one of the most walkable and bikeable cities in the nation, and one in three commuters already take public transportation. There are three general strategies to reaching a carbon-neutral transportation system: • Shift trips out of automobiles to transit, biking, and walking;1 • Reduce automobile trips via land use planning that encourages denser development and affordable housing in transit-rich neighborhoods; • Shift most automobiles, trucks, buses, and trains to zero-GHG electricity. Even with Boston’s strong transit foundation, a carbon-neutral transportation system requires a wholesale change in Boston’s transportation culture. Success depends on the intelligent adoption of new technologies, influencing behavior with strong, equitable, and clearly articulated planning and investment, and effective collaboration with state and regional partners.Published versio

    On the Feasibility of Electrification for Large Mobile Cranes

    Get PDF
    Trends towards vehicle electrification to reduce dependence on fossil fuels and increase drive train efficiency have led vehicle manufacturers to seek out paths towards gradual hybridization. For heavy duty construction vehicles, electrification consists of two principle components: electric hybridization of the vehicle carrier and the vehicle\u27s auxiliary function. Economic and physical feasibility for the transition to electrical replacements for critical system components is important for the gradual development of electrified systems. In this paper, we present an investigation into multiple pathways for the hybridization of mobile cranes paired with simulations that analyze the feasibility of system electrification. ADVISOR was used to compare the feasibility of hybrid topologies for the vehicle carrier of a crane using approximate emissions, fuel economy, and efficiency. Analysis of the feasibility of transitioning to an electric motor for the crane\u27s auxiliary function was performed using ANSYS TwinBuilder. Issues concerning satisfying the current draw of electric motors for both simulations point to currently available energy storage systems as the main factor hindering the electrification of mobile crane systems without significant redesign due to the initial cost, upkeep, and lack of energy density

    Effect of Silicon Carbide on Electric Drivetrains of Heavy-Duty Vehicles

    Get PDF
    The application of electro-mechanical motors in rigorous, high-temperature systems is constantly adapting to suit the growing needs of developers in the automotive, construction, and aerospace industries. With improved efficiency, torque, and environmental impact over conventional internal combustion engines, electric drive trains pose more than ample incentive for manufacturers to invest considerable resources toward the design of newer, better methods of electric propulsion. This paper discusses the motives behind the electrification of heavy-duty vehicles, the state-of-the-art technology currently available on the market, and the novel application of silicon carbide to electric drive trains as a means of increasing their heat tolerance, decreasing package size, and increasing efficiency

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change

    Trends and Hybridization Factor for Heavy-Duty Working Vehicles

    Get PDF
    Reducing the environmental impact of ground vehicles is one of the most important issues in modern society. Construction and agricultural vehicles contribute to pollution due to their huge power trains, which consume a large amount of petrol and produce many exhaust emissions. In this study, several recently proposed hybrid electric architectures of heavy-duty working vehicles are presented and described. Producers have recently shown considerable attention to similar research, which, however, are still at the initial stages of development. In addition, despite having some similarities with the automotive field, the working machine sector has technical features that require specific studies and the development of specific solutions. In this work, the advantages and disadvantages of hybrid electric solutions are pointed out, focusing on the greater electromechanical complexity of the machines and their components. A specific hybridization factor for working vehicles is introduced, taking into account both the driving and the loading requirements in order to classify and compare the different hybrid solutions
    • …
    corecore