5 research outputs found

    A systematic review of machine learning techniques related to local energy communities

    Get PDF
    In recent years, digitalisation has rendered machine learning a key tool for improving processes in several sectors, as in the case of electrical power systems. Machine learning algorithms are data-driven models based on statistical learning theory and employed as a tool to exploit the data generated by the power system and its users. Energy communities are emerging as novel organisations for consumers and prosumers in the distribution grid. These communities may operate differently depending on their objectives and the potential service the community wants to offer to the distribution system operator. This paper presents the conceptualisation of a local energy community on the basis of a review of 25 energy community projects. Furthermore, an extensive literature review of machine learning algorithms for local energy community applications was conducted, and these algorithms were categorised according to forecasting, storage optimisation, energy management systems, power stability and quality, security, and energy transactions. The main algorithms reported in the literature were analysed and classified as supervised, unsupervised, and reinforcement learning algorithms. The findings demonstrate the manner in which supervised learning can provide accurate models for forecasting tasks. Similarly, reinforcement learning presents interesting capabilities in terms of control-related applications.publishedVersio

    A Cost-Effective Optimization for Scheduling of Household Appliances and Energy Resources

    Full text link
    In literature, proposed approaches mostly focused on household appliances scheduling for reducing consumers' electricity bills, peak-to-average ratio, electricity usage in peak load hours, and enhancing user comfort level. The scheduling of smart home deployed energy resources recently became a critical issue on demand side due to a higher share of renewable energy sources. In this paper, a new hybrid genetic-based harmony search (HGHS) approach has been proposed for modeling the home energy management system, which contributes to minimizing consumers' electricity bills and electricity usage during peak load hours by scheduling both household appliances and smart home deployed energy resources. We have comparatively evaluated the optimization results obtained from the proposed HGHS and other approaches. The experimental results confirmed the superiority of HGHS over genetic algorithm (GA) and harmony search algorithm (HSA). The proposed HGHS scheduling approach outperformed more efficiently than HSA and GA. The electricity usage cost for completing one-day operation of household appliances was limited to 1305.7 cents, 953.65 cents, and 569.44 cents in the proposed scheduling approach for case I, case II, and case III, respectively and was observed as lower than other approaches. The electricity consumption cost was reduced upto 23.125%, 43.87% and 66.44% in case I, case II, and case III, respectively using proposed scheduling approach as compared to an unscheduled load scenario. Moreover, the electrical peak load was limited to 3.07 kW, 2.9478 kW, and 1.9 kW during the proposed HGHS scheduling approach and was reported as lower than other approaches

    Very short-term load forecaster based on a neural network technique for smart grid control

    Get PDF
    Electrical load forecasting plays a crucial role in the proper scheduling and operation of power systems. To ensure the stability of the electrical network, it is necessary to balance energy generation and demand. Hence, different very short-term load forecast technologies are being designed to improve the efficiency of current control strategies. This paper proposes a new forecaster based on artificial intelligence, specifically on a recurrent neural network topology, trained with a Levenberg–Marquardt learning algorithm. Moreover, a sensitivity analysis was performed for determining the optimal input vector, structure and the optimal database length. In this case, the developed tool provides information about the energy demand for the next 15 min. The accuracy of the forecaster was validated by analysing the typical error metrics of sample days from the training and validation databases. The deviation between actual and predicted demand was lower than 0.5% in 97% of the days analysed during the validation phase. Moreover, while the root mean square error was 0.07 MW, the mean absolute error was 0.05 MW. The results suggest that the forecaster’s accuracy is considered sufficient for installation in smart grids or other power systems and for predicting future energy demand at the chosen sites

    Assessing the impact of employing machine learning-based baseline load prediction pipelines with sliding-window training scheme on offered flexibility estimation for different building categories

    Get PDF
    The present study is focused on assessing the impact of the performance of baseline load prediction pipelines on the estimation (by the grid operator) accuracy of the flexibility offered by different categories of buildings. Accordingly, the corresponding impact of employing different machine learning (ML) algorithms, with sliding-window and offline training schemes, for hour-ahead baseline load prediction has been investigated and compared. Using a smart meter measurements dataset, training window sizes and the most promising pipeline for each building category are first identified. Next, the consumption profiles of five buildings (belonging to each category), with the regular operation (baseline load) and while offering flexibility, are physically simulated. Finally, the identified pipelines are used for predicting the baseline loads, and the resulting error in estimating the provided flexibility is determined. Obtained results demonstrate that the identified most promising prediction pipeline (extra trees algorithm with a sliding window of 5 weeks) offers a notably superior performance compared to that of offline training (average score of 0.91 vs. 0.87). Employing these pipelines permits estimating the provided flexibility with acceptable accuracy (flexibility index's mean relative error between -2.45% to +2.79%), permitting the grid operator to guarantee fair compensation for buildings' offered flexibility.publishedVersio

    Assessing the impact of employing machine learning-based baseline load prediction pipelines with sliding-window training scheme on offered flexibility estimation for different building categories

    Get PDF
    The present study is focused on assessing the impact of the performance of baseline load prediction pipelines on the estimation (by the grid operator) accuracy of the flexibility offered by different categories of buildings. Accordingly, the corresponding impact of employing different machine learning (ML) algorithms, with sliding-window and offline training schemes, for hour-ahead baseline load prediction has been investigated and compared. Using a smart meter measurements dataset, training window sizes and the most promising pipeline for each building category are first identified. Next, the consumption profiles of five buildings (belonging to each category), with the regular operation (baseline load) and while offering flexibility, are physically simulated. Finally, the identified pipelines are used for predicting the baseline loads, and the resulting error in estimating the provided flexibility is determined. Obtained results demonstrate that the identified most promising prediction pipeline (extra trees algorithm with a sliding window of 5 weeks) offers a notably superior performance compared to that of offline training (average R2 score of 0.91 vs. 0.87). Employing these pipelines permits estimating the provided flexibility with acceptable accuracy (flexibility index's mean relative error between -2.45% to +2.79%), permitting the grid operator to guarantee fair compensation for buildings' offered flexibility
    corecore