26 research outputs found

    Electrical model of an NMOS body biased structure in triple-well technology under photoelectric laser stimulation

    Get PDF
    International audience— This study is driven by the need to optimize failure analysis methodologies based on laser/silicon interactions with an integrated circuit using a triple-well process. It is therefore mandatory to understand the behavior of elementary devices to laser illumination, in order to model and predict the behavior of more complex circuits. This paper presents measurements of the photoelectric currents induced by a pulsed-laser on an NMOS transistor in triple-well Psubstrate/DeepNwell/Pwell structure dedicated to low power body biasing techniques. This evaluation compares the triple-well structure to a classical Psubstrate-only structure of an NMOS transistor. It reveals the possible activation change of the bipolar transistors. Based on these experimental measurements, an electrical model is proposed that makes it possible to simulate the effects induced by photoelectric laser stimulation

    SEU sensitivity and modeling using picosecond pulsed laser stimulation of a D Flip-Flop in 40 nm CMOS technology

    Get PDF
    International audience—This paper presents the design of a CMOS 40 nm D Flip-Flop cell and reports the laser fault sensitivity mapping both with experiments and simulation results. Theses studies are driven by the need to propose a simulation methodology based on laser/silicon interactions with a complex integrated circuit. In the security field, it is therefore mandatory to understand the behavior of sensitive devices like D Flip-Flops to laser stimulation. In previous works, Roscian et al., Sarafianos et al., Lacruche et al. or Courbon et al. studied the relations between the layout of cells, its different laser-sensitive areas and their associated fault model using laser pulse duration in the nanosecond range. In this paper, we report similar experiments carried out using a shorter laser pulse duration (30 ps instead of 50 ns). We also propose an upgrade of the simulation model they used to take into account laser pulse durations in the picosecond range on a logic gate composed of a large number of transistors for a recent CMOS technology (40 nm)

    Experimental validation of a Bulk Built-In Current Sensor for detecting laser-induced currents

    Get PDF
    International audience—Bulk Built-In Current Sensors (BBICS) were developed to detect the transient bulk currents induced in the bulk of integrated circuits when hit by ionizing particles or pulsed laser. This paper reports the experimental evaluation of a complete BBICS architecture, designed to simultaneously monitor PMOS and NMOS transistors, under Photoelectric Laser Stimulation (PLS). The obtained results are the first experimental proof of the efficiency of BBICS in laser fault injection detection attempts. Furthermore, this paper highlights the importance of BBICS tapping in a sensitive area (logical gates) for improved laser detection. It studies the performances of this BBICS architecture and suggests modifications for its future implementation

    Simulation and Experimental Demonstration of the Importance of IR-Drops During Laser Fault-Injection

    Get PDF
    International audienceLaser fault injections induce transient faults into ICs by locally generating transient currents that temporarily flip the outputs of the illuminated gates. Laser fault injection can be anticipated or studied by using simulation tools at different abstraction levels: physical, electrical or logical. At the electrical level, the classical laser-fault injection model is based on the addition of current sources to the various sensitive nodes of CMOS transistors. However, this model does not take into account the large transient current components also induced between the VDD and GND of ICs designed with advanced CMOS technologies. These short-circuit currents provoke a significant IR-drop that contribute to the fault injection process. This paper describes our research on the assessment of this contribution. It shows through simulation and experiments that during laser fault injection campaigns, laser-induced IR-drop is always present when considering circuits designed with deep submicron technologies. It introduces an enhanced electrical fault model taking the laser-induced IR-drop into account. It also proposes a methodology that allows the use of the model to simulate laser-induced faults at the electrical level in large-scale circuits. On the basis of further simulations and experimental results, we found that, depending on the laser pulse characteristics, the number of injected faults may be underestimated by a factor of up to 2.4 if the laser-induced IR-drop is ignored. This could lead to incorrect estimations of the fault injection threshold, which is especially relevant to the design of countermeasure techniques for secure integrated systems

    Precise Model of the Effective Threshold Voltage Changes in the DLS MOSFETs for Different Gate Angles Compared with Measured Data

    Get PDF
    This paper presents an interesting phenomenon related to the effective threshold voltage changes (δV th,eff ) in the diamond layout shape MOS transistors (DLS MOSFETs). Besides it, its analytical expression is presented here for the first time. The analytical approximative expression has been defined based on the results of the 3-D TCAD simulations for the different effective aspect ratio (W/L) eff and different angle α of DLS MOSFET. The effective aspect ratio has been set to 2.0, 1.5, 1.0, 0.5 with the angle α varied from 180° to 80° with the step 20°. Furthermore, for purpose to verify the 3-D TCAD simulation results and measurement results, 1 124 samples were fabricated, which were proportionally divided into rectangle layout shape (RLS) MOSFETs and DLS MOSFETs with the angles α equal to 120°, 100°, and 80°. All the samples have been fabricated in the 160 nm BCD technology process. The mentioned phenomenon described by the proposed expression fits the measured data with a very high level of accuracy equal to 99.995 %. Thus, the presented analytical expression proves its quality. Thanks to the high level of the expression quality, the given expression is recommended to use for the analog designs with high-level precision requests and DLS MOSFET components

    Nonlinear microscopy for failure analysis of CMOS integrated circuits in the vectorial focusing regime

    Get PDF
    This thesis focuses on the development of techniques for enhancing the spatial resolution and localisation precision in the sub-surface microscopy for failure analysis in semiconductor integrated circuits (ICs). Highest spatial resolutions are obtained by implementing solid immersion lenses (SIL), which provide unsurpassed numerical aperture (NA) for sub-surface microscopy. These high NA conditions mean that scalar diffraction theory is no longer valid and a vectorial focusing description should be applied to accurately describe the focal plane electric field distribution. Vectorial theory predicts that under high NA conditions a linearly polarised (LP) light focuses to a spot that is extended along the electric field vector, but radially polarised (RP) light is predicted to form a circular spot whose diameter equals the narrower dimension obtained with linear polarisation. By implementing a novel liquid-crystal (LC) radial polarisation converter (RPC) this effect was studied for both two-photon optical-beam-induced current (TOBIC) microscopy and two-photon laser assisted device alteration (2pLADA) techniques, showing a resolution and localisation improvement using the RP beam. By comparing images of the same structural features obtained using linear, circular and radial polarisations imaging and localisation resolutions both approaching 100 nm were demonstrated. The obtained experimental results were in good agreement with modelling and were consistent with theoretically predicted behaviour. Certain artefacts were observed under radial polarisation, which were thought to result from the extended depth of focus and the significant longitudinal field component. In any application these effects must be considered alongside the benefits of the symmetric field distribution in the focal plane. While SIL sub-surface microscopy offers unmatched spatial resolutions, it is prone to being severely degraded by aberrations arising from inaccurate dimensions of the SIL, imprecise substrate thickness or imperfect contact between SIL and substrate. It is in this context that techniques to identify and even mitigate aberrations in the system are important. A simple approach is demonstrated for revealing the presence of chromatic and spherical aberrations by measuring the two-photon autocorrelation of the pulses at the focal plane inside the sample. In the case of aberration free imaging, it was shown both theoretically and experimentally that the planes of the maximum autocorrelation amplitude and shortest pulse duration always coincide. Therefore, the optics of the imaging system can be first adjusted to obtain the minimum autocorrelation duration and then the wavefront of incident light modified to maximise the autocorrelation intensity, iterating this procedure until the positions of minimum pulse duration and maximum autocorrelation amplitude coincide

    Time resolved single photon imaging in Nanometer Scale CMOS technology

    Get PDF
    Time resolved imaging is concerned with the measurement of photon arrival time. It has a wealth of emerging applications including biomedical uses such as fluorescence lifetime microscopy and positron emission tomography, as well as laser ranging and imaging in three dimensions. The impact of time resolved imaging on human life is significant: it can be used to identify cancerous cells in-vivo, how well new drugs may perform, or to guide a robot around a factory or hospital. Two essential building blocks of a time resolved imaging system are a photon detector capable of sensing single photons, and fast time resolvers that can measure the time of flight of light to picosecond resolution. In order to address these emerging applications, miniaturised, single-chip, integrated arrays of photon detectors and time resolvers must be developed with state of the art performance and low cost. The goal of this research is therefore the design, layout and verification of arrays of low noise Single Photon Avalanche Diodes (SPADs) together with high resolution Time-Digital Converters (TDCs) using an advanced silicon fabrication process. The research reported in this Thesis was carried out as part of the E.U. funded Megaframe FP6 Project. A 32x32 pixel, one million frames per second, time correlated imaging device has been designed, simulated and fabricated using a 130nm CMOS Imaging process from ST Microelectronics. The imager array has been implemented together with required support cells in order to transmit data off chip at high speed as well as providing a means of device control, test and calibration. The fabricated imaging device successfully demonstrates the research objectives. The Thesis presents details of design, simulation and characterisation results of the elements of the Megaframe device which were the author’s own work. Highlights of the results include the smallest and lowest noise SPAD devices yet published for this class of fabrication process and an imaging array capable of recording single photon arrivals every microsecond, with a minimum time resolution of fifty picoseconds and single bit linearity

    Miniaturized Optical Probes for Near Infrared Spectroscopy

    Get PDF
    RÉSUMÉ L’étude de la propagation de la lumière dans des milieux hautement diffus tels que les tissus biologiques (imagerie optique diffuse) est très attrayante, car elle offre la possibilité d’explorer de manière non invasive le milieu se trouvant profondément sous la surface, et de retrouver des informations sur l’absorption (liée à la composition chimique) et sur la diffusion (liée à la microstructure). Dans la gamme spectrale 600-1000 nm, également appelée gamme proche infrarouge (NIR en anglais), l'atténuation de la lumière par le tissu biologique (eau, lipides et hémoglobine) est relativement faible, ce qui permet une pénétration de plusieurs centimètres dans le tissu. En spectroscopie proche infrarouge (NIRS en anglais), de photons sont injectés dans les tissus et le signal émis portant des informations sur les constituants tissulaires est mesuré. La mesure de très faibles signaux dans la plage de longueurs d'ondes visibles et proche infrarouge avec une résolution temporelle de l'ordre de la picoseconde s'est révélée une technique efficace pour étudier des tissus biologiques en imagerie cérébrale fonctionnelle, en mammographie optique et en imagerie moléculaire, sans parler de l'imagerie de la durée de vie de fluorescence, la spectroscopie de corrélation de fluorescence, informations quantiques et bien d’autres. NIRS dans le domaine temporel (TD en anglais) utilise une source de lumière pulsée, généralement un laser fournissant des impulsions lumineuses d'une durée de quelques dizaines de picosecondes, ainsi qu'un appareil de détection avec une résolution temporelle inférieure à la nanoseconde. Le point essentiel de ces mesures est la nécessité d’augmenter la sensibilité pour de plus grandes profondeurs d’investigation, en particulier pour l’imagerie cérébrale fonctionnelle, où la peau, le crâne et le liquide céphalo-rachidien (LCR) masquent fortement le signal cérébral. À ce jour, l'adoption plus large de ces techniques optique non invasives de surveillance est surtout entravée par les composants traditionnels volumineux, coûteux, complexes et fragiles qui ont un impact significatif sur le coût et la dimension de l’ensemble du système. Notre objectif est de développer une sonde NIRS compacte et miniaturisée, qui peut être directement mise en contact avec l'échantillon testé pour obtenir une haute efficacité de détection des photons diffusés, sans avoir recours à des fibres et des lentilles encombrantes pour l'injection et la collection de la lumière. Le système proposé est composé de deux parties: i) une unité d’émission de lumière pulsée et ii) un module de détection à photon unique qui peut être activé et désactivé rapidement. L'unité d'émission de lumière utilisera une source laser pulsée à plus de 80 MHz avec une largeur d'impulsion de picoseconde.----------ABSTRACT The study of light propagation into highly diffusive media like biological tissues (Diffuse Optical Imaging) is highly appealing due to the possibility to explore the medium non-invasively, deep beneath the surface and to recover information both on absorption (related to chemical composition) and on scattering (related to microstructure). In the 600–1000 nm spectral range also known as near-infrared (NIR) range, light attenuation by the biological tissue constituents (i.e. water, lipid, and hemoglobin) is relatively low and allows for penetration through several centimeters of tissue. In near-infrared spectroscopy (NIRS), a light signal is injected into the tissues and the emitted signal carrying information on tissue constituents is measured. The measurement of very faint light signals in the visible and near-infrared wavelength range with picosecond timing resolution has proven to be an effective technique to study biological tissues in functional brain imaging, optical mammography and molecular imaging, not to mention fluorescence lifetime imaging, fluorescence correlation spectroscopy, quantum information and many others. Time Domain (TD) NIRS employs a pulsed light source, typically a laser providing light pulses with duration of a few tens of picoseconds, and a detection circuit with temporal resolution in the sub-nanosecond scale. The key point of these measurements is the need to increase the sensitivity to higher penetration depths of investigation, in particular for functional brain imaging, where skin, skull, and cerebrospinal fluid (CSF) heavily mask the brain signal. To date, the widespread adoption of the non-invasive optical monitoring techniques is mainly hampered by the traditional bulky, expensive, complex and fragile components which significantly impact the overall cost and dimension of the system. Our goal is the development of a miniaturized compact NIRS probe, that can be directly put in contact with the sample under test to obtain high diffused photon harvesting efficiency without the need for cumbersome optical fibers and lenses for light injection and collection. The proposed system is composed of two parts namely; i) pulsed light emission unit and ii) gated single-photon detection module. The light emission unit will employ a laser source pulsed at over 80MHz with picosecond pulse width generator embedded into the probe along with the light detection unit which comprises single-photon detectors integrated with other peripheral control circuitry. Short distance source and detector pairing, most preferably on a single chip has the potential to greatly expedites the traditional method of portable brain imaging

    Proof-of-concept of a single-point Time-of-Flight LiDAR system and guidelines towards integrated high-accuracy timing, advanced polarization sensing and scanning with a MEMS micromirror

    Get PDF
    Dissertação de mestrado integrado em Engenharia Física (área de especialização em Dispositivos, Microssistemas e Nanotecnologias)The core focus of the work reported herein is the fulfillment of a functional Light Detection and Ranging (LiDAR) sensor to validate the direct Time-of-Flight (ToF) ranging concept and the acquisition of critical knowledge regarding pivotal aspects jeopardizing the sensor’s performance, for forthcoming improvements aiming a realistic sensor targeted towards automotive applications. Hereupon, the ToF LiDAR system is implemented through an architecture encompassing both optical and electronical functions and is subsequently characterized under a sequence of test procedures usually applied in benchmarking of LiDAR sensors. The design employs a hybrid edge-emitting laser diode (pulsed at 6kHz, 46ns temporal FWHM, 7ns rise-time; 919nm wavelength with 5nm FWHM), a PIN photodiode to detect the back-reflected radiation, a transamplification stage and two Time-to-Digital Converters (TDCs), with leading-edge discrimination electronics to mark the transit time between emission and detection events. Furthermore, a flexible modular design is adopted using two separate Printed Circuit Boards (PCBs), comprising the transmitter (TX) and the receiver (RX), i.e. detection and signal processing. The overall output beam divergence is 0.4º×1º and an optical peak power of 60W (87% overall throughput) is realized. The sensor is tested indoors from 0.56 to 4.42 meters, and the distance is directly estimated from the pulses transit time. The precision within these working distances ranges from 4cm to 7cm, reflected in a Signal-to-Noise Ratio (SNR) between 12dB and 18dB. The design requires a calibration procedure to correct systematic errors in the range measurements, induced by two sources: the timing offset due to architecture-inherent differences in the optoelectronic paths and a supplementary bias resulting from the design, which renders an intensity dependence and is denoted time-walk. The calibrated system achieves a mean accuracy of 1cm. Two distinct target materials are used for characterization and performance evaluation: a metallic automotive paint and a diffuse material. This selection is representative of two extremes of actual LiDAR applications. The optical and electronic characterization is thoroughly detailed, including the recognition of a good agreement between empirical observations and simulations in ZEMAX, for optical design, and in a SPICE software, for the electrical subsystem. The foremost meaningful limitation of the implemented design is identified as an outcome of the leading-edge discrimination. A proposal for a Constant Fraction Discriminator addressing sub-millimetric accuracy is provided to replace the previous signal processing element. This modification is mandatory to virtually eliminate the aforementioned systematic bias in range sensing due to the intensity dependency. A further crucial addition is a scanning mechanism to supply the required Field-of-View (FOV) for automotive usage. The opto-electromechanical guidelines to interface a MEMS micromirror scanner, achieving a 46º×17º FOV, with the LiDAR sensor are furnished. Ultimately, a proof-of-principle to the use of polarization in material classification for advanced processing is carried out, aiming to complement the ToF measurements. The original design is modified to include a variable wave retarder, allowing the simultaneous detection of orthogonal linear polarization states using a single detector. The material classification with polarization sensing is tested with the previously referred materials culminating in an 87% and 11% degree of linear polarization retention from the metallic paint and the diffuse material, respectively, computed by Stokes parameters calculus. The procedure was independently validated under the same conditions with a micro-polarizer camera (92% and 13% polarization retention).O intuito primordial do trabalho reportado no presente documento é o desenvolvimento de um sensor LiDAR funcional, que permita validar o conceito de medição direta do tempo de voo de pulsos óticos para a estimativa de distância, e a aquisição de conhecimento crítico respeitante a aspetos fundamentais que prejudicam a performance do sensor, ambicionando melhorias futuras para um sensor endereçado para aplicações automóveis. Destarte, o sistema LiDAR é implementado através de uma arquitetura que engloba tanto funções óticas como eletrónicas, sendo posteriormente caracterizado através de uma sequência de testes experimentais comumente aplicáveis em benchmarking de sensores LiDAR. O design tira partido de um díodo de laser híbrido (pulsado a 6kHz, largura temporal de 46ns; comprimento de onda de pico de 919nm e largura espetral de 5nm), um fotodíodo PIN para detetar a radiação refletida, um andar de transamplificação e dois conversores tempo-digital, com discriminação temporal com threshold constante para marcar o tempo de trânsito entre emissão e receção. Ademais, um design modular flexível é adotado através de duas PCBs independentes, compondo o transmissor e o recetor (deteção e processamento de sinal). A divergência global do feixe emitido para o ambiente circundante é 0.4º×1º, apresentando uma potência ótica de pico de 60W (eficiência de 87% na transmissão). O sensor é testado em ambiente fechado, entre 0.56 e 4.42 metros. A precisão dentro das distâncias de trabalho varia entre 4cm e 7cm, o que se reflete numa razão sinal-ruído entre 12dB e 18dB. O design requer calibração para corrigir erros sistemáticos nas distâncias adquiridas devido a duas fontes: o desvio no ToF devido a diferenças nos percursos optoeletrónicos, inerentes à arquitetura, e uma dependência adicional da intensidade do sinal refletido, induzida pela técnica de discriminação implementada e denotada time-walk. A exatidão do sistema pós-calibração perfaz um valor médio de 1cm. Dois alvos distintos são utilizados durante a fase de caraterização e avaliação performativa: uma tinta metálica aplicada em revestimentos de automóveis e um material difusor. Esta seleção é representativa de dois cenários extremos em aplicações reais do LiDAR. A caraterização dos subsistemas ótico e eletrónico é minuciosamente detalhada, incluindo a constatação de uma boa concordância entre observações empíricas e simulações óticas em ZEMAX e elétricas num software SPICE. O principal elemento limitante do design implementado é identificado como sendo a técnica de discriminação adotada. Por conseguinte, é proposta a substituição do anterior bloco por uma técnica de discriminação a uma fração constante do pulso de retorno, com exatidões da ordem sub-milimétrica. Esta modificação é imperativa para eliminar o offset sistemático nas medidas de distância, decorrente da dependência da intensidade do sinal. Uma outra inclusão de extrema relevância é um mecanismo de varrimento que assegura o cumprimento dos requisitos de campo de visão para aplicações automóveis. As diretrizes para a integração de um micro-espelho no sensor concebido são providenciadas, permitindo atingir um campo de visão de 46º×17º. Conclusivamente, é feita uma prova de princípio para a utilização da polarização como complemento das medições do tempo de voo, de modo a suportar a classificação de materiais em processamento avançado. A arquitetura original é modificada para incluir uma lâmina de atraso variável, permitindo a deteção de estados de polarização ortogonais com um único fotodetetor. A classificação de materiais através da aferição do estado de polarização da luz refletida é testada para os materiais supramencionados, culminando numa retenção de polarização de 87% (tinta metálica) e 11% (difusor), calculados através dos parâmetros de Stokes. O procedimento é independentemente validado com uma câmara polarimétrica nas mesmas condições (retenção de 92% e 13%)

    Development and Test of a High Performance Multi Channel Readout System on a Chip with Application in PET/MR

    Get PDF
    The availability of new, compact, magnetic field tolerant sensors suitable for PET has opened the opportunity to build highly integrated PET scanners that can be included in commercial MR scanners. This combination has long been expected to have big advantages over existing systems combining PET and CT. This thesis describes my work towards building a highly integrated readout ASIC for application in PET/MR within the framework of the HYPERImage and SUBLIMA projects. It also gives a brief introduction into both PET and MR to understand the unique challenges for the readout system caused by each system, and their combination. A number of typical solutions for different requirements of the ASIC - timing measurements, trigger generation, and energy readout - and contemporary readout systems are presented to put our system in context. Detailed measurements have been performed to evaluate the performance of the ASIC, and the setup and results are presented here
    corecore