60 research outputs found

    Connectomic analysis of the input to the principal cells of the mammalian cerebral cortex

    Get PDF

    Electrical Advantages of Dendritic Spines

    No full text
    Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations.This work was supported by National Institutes of Health grant R01 MH83806 (ATG), the National Health and Medical Research Council of Australia (GJS), and NIH grants NS11613 and DC00086 (NTC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Connectomic analysis of mouse barrel cortex and fly optic lobe

    Get PDF

    Properties and function of somatostatin-containing inhibitory interneurons in the somatosensory cortex of the mouse

    Get PDF
    GABAergic inhibitory interneurons play a pivotal role in balancing neuronal activity in the neocortex. They can be classified into different classes according to their variable morphological, electrophysiological, and neurochemical properties, including two major groups: parvalbumin-containing (PV+), fast-spiking (FS) cells and somatostatin-containing (SOM+) cells. Using transgenic mice, we identified two subgroups, distinct by all criteria, of SOM+ cells in the somatosensory (barrel) cortex of the mouse, one (called X94) in layer 4 and 5B, and the other one (X98) in deep layers (Ma et al., 2006). We found that X98 cells were calbindin-expressing (CB+), infragranular, layer 1--targeting Martinotti cells, and had a propensity to fire low-threshold calcium spikes, whereas X94 cells did not express CB, targeted mostly layer 4, discharged in stuttering pattern and with quasi fast-spiking properties. In the barrel cortex, it was previously shown that SOM+ cells mediate disynaptic inhibition in supragranular and infragranular layers. However, the roles of layer 4 SOM+ cells remain largely unknown. We used dual whole-cell recording to elucidate the synaptic circuits in layer 4 and the function of layer 4 SOM+ cells during cortical network activities. We found that layer 4 X94 SOM+ cells received strongly facilitating excitatory input and generated relatively slow rising inhibitory postsynaptic currents (IPSCs) compared to those evoked by FS cells. Strikingly, our data showed that SOM+ cells mediated strong synaptic inhibition of FS cells with connection probability greater than 90% in layer 4, but received very little reciprocal inhibition from FS cells, and no reciprocal inhibition from other SOM+ cells. Moreover, 100% of recorded SOM+-SOM+ cell pairs were electrically coupled with higher coupling ratio compared to that of electrically coupled FS cell pairs. In order to examine the functions of SOM+ cells, we applied 0 Mg2+ artificial cerebrospinal fluid (ACSF) to induce episodes of cortical network activity and observed that, during episodes of network activity, SOM+ cells fired robustly and synchronously, and produced strong inhibition of regular-spiking (RS) excitatory cells and inhibitory FS cells, especially the latter. Taken together, our data reveal that SOM+ cells in the barrel cortex can be sub-divided into different subtypes, and that layer 4 SOM+ cells exert a powerful inhibitory effect during high frequency network activity

    Three-dimensional reengineering of neuronal microcircuits : The cortical column in silico

    Get PDF
    The presented thesis will describe a pipeline to reengineer three-dimensional, anatomically realistic, functional neuronal networks with subcellular resolution. The pipeline consists of five methods: 1. "NeuroCount" provides the number and three-dimensional distribution of all neuron somata in large brain regions. 2. "NeuroMorph" provides authentic neuron tracings, comprising dendrite and axon morphology. 3. "daVinci" registers the neuron morphologies to a standardized reference framework. 4. "NeuroCluster" objectively groups the standardized tracings into anatomical neuron types. 5. "NeuroNet" combines the number and distribution of neurons and neuron-types with the standardized tracings and determines the neuron-type- and position-specific number of synaptic connections for any two types of neuron. The developed methods are demonstrated by reengineering the thalamocortical lemniscal microcircuit in the somatosensory system of rats. There exists an one-to-one correspondence between the sensory information obtained by a single facial whisker and segregated areas in the thalamus and cortex. The reengineering of this pathway results in a column-shaped network model of ~15200 excitatory full-compartmental cortical neurons. This network is synaptically connected to ~285 pre-synaptic thalamic neurons. Animation of this "cortical column in silico" with measured physiological input will help to gain a mechanistic understanding of neuronal sensory information processing in the mammalian brain

    Human Cortical Pyramidal Neurons: From Spines to Spikes via Models

    Get PDF
    We present detailed models of pyramidal cells from human neocortex, including models on their excitatory synapses, dendritic spines, dendritic NMDA- and somatic/axonal Na+ spikes that provided new insights into signal processing and computational capabilities of these principal cells. Six human layer 2 and layer 3 pyramidal cells (HL2/L3 PCs) were modeled, integrating detailed anatomical and physiological data from both fresh and postmortem tissues from human temporal cortex. The models predicted particularly large AMPA- and NMDA-conductances per synaptic contact (0.88 and 1.31 nS, respectively) and a steep dependence of the NMDA-conductance on voltage. These estimates were based on intracellular recordings from synaptically-connected HL2/L3 pairs, combined with extra-cellular current injections and use of synaptic blockers, and the assumption of five contacts per synaptic connection. A large dataset of high-resolution reconstructed HL2/L3 dendritic spines provided estimates for the EPSPs at the spine head (12.7 ± 4.6 mV), spine base (9.7 ± 5.0 mV), and soma (0.3 ± 0.1 mV), and for the spine neck resistance (50–80 MΩ). Matching the shape and firing pattern of experimental somatic Na+-spikes provided estimates for the density of the somatic/axonal excitable membrane ion channels, predicting that 134 ± 28 simultaneously activated HL2/L3-HL2/L3 synapses are required for generating (with 50% probability) a somatic Na+ spike. Dendritic NMDA spikes were triggered in the model when 20 ± 10 excitatory spinous synapses were simultaneously activated on individual dendritic branches. The particularly large number of basal dendrites in HL2/L3 PCs and the distinctive cable elongation of their terminals imply that ~25 NMDA-spikes could be generated independently and simultaneously in these cells, as compared to ~14 in L2/3 PCs from the rat somatosensory cortex. These multi-sites non-linear signals, together with the large (~30,000) excitatory synapses/cell, equip human L2/L3 PCs with enhanced computational capabilities. Our study provides the most comprehensive model of any human neuron to-date demonstrating the biophysical and computational distinctiveness of human cortical neurons
    • …
    corecore