2,378 research outputs found

    Contactless Remote Induction of Shear Waves in Soft Tissues Using a Transcranial Magnetic Stimulation Device

    Full text link
    This study presents the first observation of shear wave induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitude of 5 and 0.5 micrometers were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method

    Contactless electrical conductivity measurement of metallic submicron-grain material: Application to the study of aluminum with severe plastic deformation

    Get PDF
    We measured the electrical conductivity σ of aluminum specimen consisting of submicron-grains by observing the AC magnetic susceptibility resulting from the eddy current. By using a commercial platform for magnetic measurement, contactless measurement of the relative electrical conductivity σn of a nonmagnetic metal is possible over a wide temperature (T) range. By referring to σ at room temperature, obtained by the four-terminal method, σn(T) was transformed into σ(T). This approach is useful for cylinder specimens, in which the estimation of the radius and/or volume is difficult. An experiment in which aluminum underwent accumulative roll bonding, which is a severe plastic deformation process, validated this method of evaluating σ as a function of the fraction of high-angle grain boundaries

    Linearization Point and Frequency Selection for Complex-Valued Electrical Capacitance Tomography

    Get PDF

    Contactless graphene conductivity mapping on a wide range of substrates with terahertz time-domain reflection spectroscopy.

    Get PDF
    We demonstrate how terahertz time-domain spectroscopy (THz-TDS) operating in reflection geometry can be used for quantitative conductivity mapping of large area chemical vapour deposited graphene films on sapphire, silicon dioxide/silicon and germanium. We validate the technique against measurements performed with previously established conventional transmission based THz-TDS and are able to resolve conductivity changes in response to induced back-gate voltages. Compared to the transmission geometry, measurement in reflection mode requires careful alignment and complex analysis, but circumvents the need of a terahertz transparent substrate, potentially enabling fast, contactless, in-line characterisation of graphene films on non-insulating substrates such as germanium.H.L. and J.A.Z. acknowledge financial support from the EPSRC (Grant No. EP/L019922/1). P.B.W. acknowledges EPSRC Cambridge NanoDTC EP/G037221/1. R.D., H.E.B. and D. R. acknowledge financial support from the EPSRC (Grant No. EP/J017671/1, Coherent Terahertz Systems). S.H. acknowledges funding from the EPSRC (Grant No. EP/K016636/1, GRAPHTED)

    In-situ steel solidification imaging in continuous casting using magnetic induction tomography

    Get PDF
    : Solidification process in continuous casting is a critical part of steel production. The speed and quality of the solidification process determines the quality of final product. Computational fluid dynamics (CFD) simulations are often used to describe the process and design of its control system, but so far, there is no any tool that provides an on-line measurement of the solidification front of hot steel during the continuous casting process. This paper presents a new tool based on magnetic induction tomography (MIT) for real time monitoring of this process. The new MIT system was installed at the end of the secondary cooling chamber of a casting unit and tested during several days in a real production process. MIT is able to create an internal map of electrical conductivity of hot steel deep inside the billet. The image of electrical conductivity is then converted to temperature profile that allows the measurement of the solid, mushy and liquid layers. In this study, such a conversion is done by synchronizing in one time step the MIT measurement and the thermal map generated with the actual process parameters available at that time. The MIT results were then compared with the results obtained of the CFD and thermal modelling of the industrial process. This is the first in-situ monitoring of the interior structure during a real continuous casting.The SHELL-THICK project has received funding from EU Research Fund for Coal and Steel under grant number 709830. This study reflects only the author's views and the European Commission is not responsible for any use that may be made of the information contained therein

    Through-substrate terahertz time-domain reflection spectroscopy for environmental graphene conductivity mapping

    Get PDF
    We demonstrate how terahertz time-domain spectroscopy (THz-TDS) operating in reflection geometry can be used for quantitative conductivity mapping of large area chemical vapor deposited graphene films through silicon support. We validate the technique against measurements performed using the established transmission based THz-TDS. Our through-substrate approach allows unhindered access to the graphene top surface and thus, as we discuss, opens up pathways to perform in situ and in-operando THz-TDS using environmental cells

    Terahertz probing of anisotropic conductivity and morphology of CuMnAs epitaxial thin films

    Full text link
    Antiferromagnetic CuMnAs thin films have attracted attention since the discovery of the manipulation of their magnetic structure via electrical, optical, and terahertz pulses of electric fields, enabling convenient approaches to the switching between magnetoresistive states of the film for the information storage. However, the magnetic structure and, thus, the efficiency of the manipulation can be affected by the film morphology and growth defects. In this study, we investigate the properties of CuMnAs thin films by probing the defect-related uniaxial anisotropy of electric conductivity by contact-free terahertz transmission spectroscopy. We show that the terahertz measurements conveniently detect the conductivity anisotropy, that are consistent with conventional DC Hall-bar measurements. Moreover, the terahertz technique allows for considerably finer determination of anisotropy axes and it is less sensitive to the local film degradation. Thanks to the averaging over a large detection area, the THz probing also allows for an analysis of strongly non-uniform thin films. Using scanning near-field terahertz and electron microscopies, we relate the observed anisotropic conductivity of CuMnAs to the elongation and orientation of growth defects, which influence the local microscopic conductivity. We also demonstrate control over the morphology of defects by using vicinal substrates.Comment: 33 pages, 16 figure
    corecore