2,723 research outputs found

    Structural Vulnerability Analysis of Electric Power Distribution Grids

    Full text link
    Power grid outages cause huge economical and societal costs. Disruptions in the power distribution grid are responsible for a significant fraction of electric power unavailability to customers. The impact of extreme weather conditions, continuously increasing demand, and the over-ageing of assets in the grid, deteriorates the safety of electric power delivery in the near future. It is this dependence on electric power that necessitates further research in the power distribution grid security assessment. Thus measures to analyze the robustness characteristics and to identify vulnerabilities as they exist in the grid are of utmost importance. This research investigates exactly those concepts- the vulnerability and robustness of power distribution grids from a topological point of view, and proposes a metric to quantify them with respect to assets in a distribution grid. Real-world data is used to demonstrate the applicability of the proposed metric as a tool to assess the criticality of assets in a distribution grid

    A Topological Investigation of Phase Transitions of Cascading Failures in Power Grids

    Full text link
    Cascading failures are one of the main reasons for blackouts in electric power transmission grids. The economic cost of such failures is in the order of tens of billion dollars annually. The loading level of power system is a key aspect to determine the amount of the damage caused by cascading failures. Existing studies show that the blackout size exhibits phase transitions as the loading level increases. This paper investigates the impact of the topology of a power grid on phase transitions in its robustness. Three spectral graph metrics are considered: spectral radius, effective graph resistance and algebraic connectivity. Experimental results from a model of cascading failures in power grids on the IEEE power systems demonstrate the applicability of these metrics to design/optimize a power grid topology for an enhanced phase transition behavior of the system

    MATCASC: A tool to analyse cascading line outages in power grids

    Full text link
    Blackouts in power grids typically result from cascading failures. The key importance of the electric power grid to society encourages further research into sustaining power system reliability and developing new methods to manage the risks of cascading blackouts. Adequate software tools are required to better analyze, understand, and assess the consequences of the cascading failures. This paper presents MATCASC, an open source MATLAB based tool to analyse cascading failures in power grids. Cascading effects due to line overload outages are considered. The applicability of the MATCASC tool is demonstrated by assessing the robustness of IEEE test systems and real-world power grids with respect to cascading failures

    Complex Network Framework Based Comparative Study of Power Grid Centrality Measures

    Get PDF
    New closeness and betweenness based centrality measures have been evaluated in this paper. Power grid is modeled as a directed graph. The graph is analyzed in terms of complex network theory to identify influential nodes which control power flow pattern throughout the whole grid and as a result can create cascade if removed unintentionally or targetedly. Various measures of impacts have been analyzed to show that power grid has scale-free network characteristics, i.e., it is very much vulnerable to targeted node removal. Measures of impacts include characteristic path length, connectivity loss and blackout size. Rank similarity analysis have been carried out to show that nominal condition of power system gives critical nodes which remain critical with changes in system operating conditions as well.DOI:http://dx.doi.org/10.11591/ijece.v3i4.331

    Space Weather and Power Grids - A Vulnerability Assessment

    Get PDF
    Strong geomagnetic disturbances resulting from solar activity can have a major impact on ground-based infrastructures, such as power grids, pipelines and railway systems. The high voltage transmission network is particularly affected as currents induced by geomagnetic storms, so-called GICs, can severely damage network equipment possibly leading to system collapse. Therefore, increasing attention has been devoted to understanding the vulnerability of power grids to space weather conditions. In this study, we aim at analysing the vulnerability of power grids to extreme space weather. By means of complex network theory, we propose an analysis approach to understand how geomagnetically induced currents are driven through the power network based on its structural and physical characteristics. As a test network we used the Finnish power grid for which a study using network centrality measures was carried out to understand which components are the most critical for the system when exposed to an electric field of 1V/km. This information is helpful as the identification and ranking of critical components can help to identify where and how mitigation measures should be implemented to increase the system’s resilience to space weather impact. We have also subjected the grid to varying angles of the electric field. In addition, we have carried out a scoping study adding load flow to the GICs induced in the system. The preliminary results suggest that the benchmark system can resist GICs induced from high intensity electric fields. Moreover, the simplified network seems more prone to collapse if the electric field is oriented northward. Work is underway to further validate and expand our approach with the aim to eventually carry out a risk assessment of space weather impact on the power grid at EU level.JRC.G.5-Security technology assessmen
    • …
    corecore