476 research outputs found

    Statistical compact model strategies for nano CMOS transistors subject of atomic scale variability

    Get PDF
    One of the major limiting factors of the CMOS device, circuit and system simulation in sub 100nm regimes is the statistical variability introduced by the discreteness of charge and granularity of matter. The statistical variability cannot be eliminated by tuning the layout or by tightening fabrication process control. Since the compact models are the key bridge between technology and design, it is necessary to transfer reliably the MOSFET statistical variability information into compact models to facilitate variability aware design practice. The aim of this project is the development of a statistical extraction methodology essential to capture statistical variability with optimum set of parameters particularly in industry standard compact model BSIM. This task is accomplished by using a detailed study on the sensitivity analysis of the transistor current in respect to key parameters in compact model in combination with error analysis of the fitted Id-Vg characteristics. The key point in the developed direct statistical compact model strategy is that the impacts of statistical variability can be captured in device characteristics by tuning a limited number of parameters and keeping the values for remaining major set equal to their default values obtained from the “uniform” MOSFET compact model extraction. However, the statistical compact model extraction strategies will accurately represent the distribution and correlation of the electrical MOSFET figures of merit. Statistical compact model parameters are generated using statistical parameter generation techniques such as uncorrelated parameter distributions, principal component analysis and nonlinear power method. The accuracy of these methods is evaluated in comparison with the results obtained from ‘atomistic’ simulations. The impact of the correlations in the compact model parameters has been analyzed along with the corresponding transistor figures of merit. The accuracy of the circuit simulations with different statistical compact model libraries has been studied. Moreover, the impact of the MOSFET width/length on the statistical trend of the optimum set of statistical compact model parameters and electrical figures of merit has been analyzed with two methods to capture geometry dependencies in proposed statistical models

    Statistical modelling of nano CMOS transistors with surface potential compact model PSP

    Get PDF
    The development of a statistical compact model strategy for nano-scale CMOS transistors is presented in this thesis. Statistical variability which arises from the discreteness of charge and granularity of matter plays an important role in scaling of nano CMOS transistors especially in sub 50nm technology nodes. In order to achieve reasonable performance and yield in contemporary CMOS designs, the statistical variability that affects the circuit/system performance and yield must be accurately represented by the industry standard compact models. As a starting point, predictive 3D simulation of an ensemble of 1000 microscopically different 35nm gate length transistors is carried out to characterize the impact of statistical variability on the device characteristics. PSP, an advanced surface potential compact model that is selected as the next generation industry standard compact model, is targeted in this study. There are two challenges in development of a statistical compact model strategy. The first challenge is related to the selection of a small subset of statistical compact model parameters from the large number of compact model parameters. We propose a strategy to select 7 parameters from PSP to capture the impact of statistical variability on current-voltage characteristics. These 7 parameters are used in statistical parameter extraction with an average RMS error of less than 2.5% crossing the whole operation region of the simulated transistors. Moreover, the accuracy of statistical compact model extraction strategy in reproducing the MOSFET electrical figures of merit is studied in detail. The results of the statistical compact model extraction are used for statistical circuit simulation of a CMOS inverter under different input-output conditions and different number of statistical parameters. The second challenge in the development of statistical compact model strategy is associated with statistical generation of parameters preserving the distribution and correlation of the directly extracted parameters. By using advanced statistical methods such as principal component analysis and nonlinear power method, the accuracy of parameter generation is evaluated and compared to directly extracted parameter sets. Finally, an extension of the PSP statistical compact model strategy to different channel width/length devices is presented. The statistical trends of parameters and figures of merit versus channel width/length are characterized

    Design for Test and Hardware Security Utilizing Tester Authentication Techniques

    Get PDF
    Design-for-Test (DFT) techniques have been developed to improve testability of integrated circuits. Among the known DFT techniques, scan-based testing is considered an efficient solution for digital circuits. However, scan architecture can be exploited to launch a side channel attack. Scan chains can be used to access a cryptographic core inside a system-on-chip to extract critical information such as a private encryption key. For a scan enabled chip, if an attacker is given unlimited access to apply all sorts of inputs to the Circuit-Under-Test (CUT) and observe the outputs, the probability of gaining access to critical information increases. In this thesis, solutions are presented to improve hardware security and protect them against attacks using scan architecture. A solution based on tester authentication is presented in which, the CUT requests the tester to provide a secret code for authentication. The tester authentication circuit limits the access to the scan architecture to known testers. Moreover, in the proposed solution the number of attempts to apply test vectors and observe the results through the scan architecture is limited to make brute-force attacks practically impossible. A tester authentication utilizing a Phase Locked Loop (PLL) to encrypt the operating frequency of both DUT/Tester has also been presented. In this method, the access to the critical security circuits such as crypto-cores are not granted in the test mode. Instead, a built-in self-test method is used in the test mode to protect the circuit against scan-based attacks. Security for new generation of three-dimensional (3D) integrated circuits has been investigated through 3D simulations COMSOL Multiphysics environment. It is shown that the process of wafer thinning for 3D stacked IC integration reduces the leakage current which increases the chip security against side-channel attacks

    Ultra-low-power SRAM design in high variability advanced CMOS

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-181).Embedded SRAMs are a critical component in modern digital systems, and their role is preferentially increasing. As a result, SRAMs strongly impact the overall power, performance, and area, and, in order to manage these severely constrained trade-offs, they must be specially designed for target applications. Highly energy-constrained systems (e.g. implantable biomedical devices, multimedia handsets, etc.) are an important class of applications driving ultra-low-power SRAMs. This thesis analyzes the energy of an SRAM sub-array. Since supply- and threshold-voltage have a strong effect, targets for these are established in order to optimize energy. Despite the heavy emphasis on leakage-energy, analysis of a high-density 256x256 sub-array in 45nm LP CMOS points to two necessary optimizations: (1) aggressive supply-voltage reduction (in addition to Vt elevation), and (2) performance enhancement. Important SRAM metrics, including read/write/hold-margin and read-current, are also investigated to identify trade-offs of these optimizations. Based on the need to lower supply-voltage, a 0.35V 256kb SRAM is demonstrated in 65nm LP CMOS. It uses an 8T bit-cell with peripheral circuit-assists to improve write-margin and bit-line leakage. Additionally, redundancy, to manage the increasing impact of variability in the periphery, is proposed to improve the area-offset trade-off of sense-amplifiers, demonstrating promise for highly advanced technology nodes. Based on the need to improve performance, which is limited by density constraints, a 64kb SRAM, using an offset-compensating sense-amplifier, is demonstrated in 45nm LP CMOS with high-density 0.25[mu]m2 bit-cells.(cont.) The sense-amplifier is regenerative, but non -strobed, overcoming timing uncertainties limiting performance, and it is single-ended, for compatibility with 8T cells. Compared to a conventional strobed sense-amplifier, it achieves 34% improvement in worst-case access-time and 4x improvement in the standard deviation of the access-time.by Naveen Verma.Ph.D

    5nm 이하 3D Transistors의 Self-Heating 및 전열특성분석 연구

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·컴퓨터공학부, 2021.8. 신형철.In this thesis, Self-Heating Effect (SHE) is investigated using TCAD simulations in various Sub-10-nm node Field Effect Transistor (FET). As the node decreases, logic devices have evolved into 3D MOSFET structures from Fin-FET to Nanosheet-FET. In the case of 3D MOSFET, there are thermal reliability issues due to the following reasons: ⅰ) The power density of the channel is high, ⅱ) The channel structure surrounded by SiO2, ⅲ) The overall low thermal conductivity characteristics due to scaling down. Many papers introduce the analysis and prediction of temperature rise by SHE in the device, but there are no papers presenting the content of mitigation of temperature rise. Therefore, we have studied the methods of decreasing the maximum lattice temperature (TL,max) such as shallow trench isolation (STI) composition engineering in Fin-FET, thermal analysis according to DC/AC/duty cycle in nanowire-FET, and active region ( e.g., gate metal thickness, channel width, channel number etc..) optimization in nanosheet-FET. In addition, lifetime affected by hot carrier injection (HCI) / bias-temperature instability (BTI) is also analyzed according to various thermal relaxation methods presented.이 논문에서는 다양한 Sub-10nm 노드 전계 효과 트랜지스터 (FET)에서 TCAD 시뮬레이션을 사용하여 자체 발열 효과 (SHE)를 조사합니다. 노드가 감소함에 따라 논리 장치는 Fin-FET에서 Nanosheet-FET로 3D MOSFET 구조로 진화했습니다. 3D MOSFET의 경우 ⅰ) 채널의 전력 밀도가 높음, ⅱ) SiO2로 둘러싸인 채널 구조, ⅲ) 축소로 인해 전체적으로 낮은 열전도 특성 등 다음과 같은 이유로 열 신뢰성 문제가 있습니다. 한편, 많은 논문이 device에서 SHE에 의한 온도 상승의 분석 및 예측을 소개하지만 온도 상승 완화의 내용을 제시하는 논문은 거의 없습니다. 따라서 Fin-FET의 STI (Shallow Trench Isolation) 구성 공학, nanowire-FET의 DC / AC / 듀티 사이클에 따른 열 분석, nanosheet-FET에서 소자의 중요영역(예: 게이트 금속 두께, 채널 폭, 채널 번호 등)의 최적화를 통해서 최대 격자 온도 (TL,max)를 낮추는 방법등을 연구했습니다. 또한 더 나아가서 HCI (Hot Carrier Injection) / BTI (Bias-Temperature Instability)의 영향을 받는 수명도 제시된 다양한 열 완화 방법에 따라 분석하여 소자의 제작에 있어 열적 특성과 수명을 좋게 만드는 지표를 제시합니다 .Chapter 1 Introduction 1 1.1. Development of Semconductor structure 1 1.2. Self-Heating Effect issues in semiconductor devices 3 Chapter 2 Thermal-Aware Shallow Trench Isolation Design Optimization for Minimizing Ioff in Various Sub-10-nm 3-D Transistor 7 2.1. Introduction 7 2.2. Device Structure and Simulation Condition 7 2.3. Results and Discussion 12 2.4. Summary 27 Chapter 3 Analysis of Self Heating Effect in DC/AC Mode in Multi-channel GAA-Field Effect Transistor 32 3.1. Introduction 32 3.2. Multi-Channel Nanowire FET and Back End Of Line 33 3.3. Work Flow and Calibration Process 35 3.4. More Detailed Thermal Simulation of Nanowire-FET 37 3.5. Performance Analysis by Number of Channels 38 3.6. DC Characteristic of SHE in Nanowire-FETs 40 3.7. AC Characteristics of SHE in Nanowire-FETs 43 3.8. Summary 51 Chapter 4 Self-Heating and Electrothermal Properties of Advanced Sub-5-nm node Nanoplate FET 56 4.1. Introduction 56 4.2. Device Structure and Simulation Condition 57 4.3. Thermal characteristics by channel number and width 62 4.4. Thermal characteristics by inter layer-metal thickness (TM) 64 4.5. Life Time Prediction 65 4.6. Summary 67 Chapter 5 Study on Self Heating Effect and life time in Vertical-channel Field Effect Transistor 72 5.1. Introduction 72 5.2. Device Structure and Simulation Condition 72 5.3. Temperature and RTH according to channel width(TW) 76 5.4. Thermal properties according to air spacers and air gap 77 5.5. Ion boosting according to Channel numbers 81 5.6. Temperature imbalance of multi-channel VFETs 82 5.7. Mitigation of the channel temperature imbalance 86 5.8. Life time depending on various analysis conditions 88 5.9. Summary 89 Chapter 6 Conclusions 93 Appendix A. A Simple and Accurate Modeling Method of Channel Thermal Noise Using BSIM4 Noise Models 95 A.1. Introduction 95 A.2. Overall Schematic of the RF MOSFET Model 97 A.3. Verification of the DC Characteristics of the RF MOSFET Model 98 A.4. Verification of the MOSFET Model with Measured Y-parameters 100 A.5. Verification of the MOSFET Model with Measured Noise Parameters 101 A.6. Thermal Noise Extraction and Modeling (TNOIMOD = 0) 103 A.7. Verification of the Enhanced Model with Noise Parameters 112 A.8. Holistic Model (TNOIMOD = 1) 114 A.9. Evaluation the validity of the model for drain bias 115 A.10. Conclusion 117 Abstract in Korean 122박

    Simulation of charge-trapping in nano-scale MOSFETs in the presence of random-dopants-induced variability

    Get PDF
    The growing variability of electrical characteristics is a major issue associated with continuous downscaling of contemporary bulk MOSFETs. In addition, the operating conditions brought about by these same scaling trends have pushed MOSFET degradation mechanisms such as Bias Temperature Instability (BTI) to the forefront as a critical reliability threat. This thesis investigates the impact of this ageing phenomena, in conjunction with device variability, on key MOSFET electrical parameters. A three-dimensional drift-diffusion approximation is adopted as the simulation approach in this work, with random dopant fluctuations—the dominant source of statistical variability—included in the simulations. The testbed device is a realistic 35 nm physical gate length n-channel conventional bulk MOSFET. 1000 microscopically different implementations of the transistor are simulated and subjected to charge-trapping at the oxide interface. The statistical simulations reveal relatively rare but very large threshold voltage shifts, with magnitudes over 3 times than that predicted by the conventional theoretical approach. The physical origin of this effect is investigated in terms of the electrostatic influences of the random dopants and trapped charges on the channel electron concentration. Simulations with progressively increased trapped charge densities—emulating the characteristic condition of BTI degradation—result in further variability of the threshold voltage distribution. Weak correlations of the order of 10-2 are found between the pre-degradation threshold voltage and post-degradation threshold voltage shift distributions. The importance of accounting for random dopant fluctuations in the simulations is emphasised in order to obtain qualitative agreement between simulation results and published experimental measurements. Finally, the information gained from these device-level physical simulations is integrated into statistical compact models, making the information available to circuit designers

    Variability of low frequency fluctuations in sub 45nm CMOS devices-Experiment, modeling and applications

    Get PDF
    D une part, les fluctuations et le bruit basse fréquence (BF) dans les dispositifs MOS ont été le sujet de recherche intensive durant ces dernières années. Le bruit BF devient une inquiétude majeure pour la réduction continuelle de la dimension des transistors car le bruit 1/f augmente comme l inverse de la surface des transistors. Le bruit BF et les fluctuations en excès pourraient constituer une limitation sérieuse du fonctionnement des circuits analogiques et numériques. Le bruit 1/f est également d'importance primordiale pour les applications de circuit RF où il provoque le bruit de phase dans les oscillateurs ou les multiplexeurs. Le développement des technologies submicroniques CMOS a conduit à l observation d un nouveau type de bruits, i.e. signaux télégraphiques aléatoires (RTS), entrainant de grandes amplitudes de fluctuations à l heure actuelle, qui peuvent compromettre la fonctionnalité des circuits. D'autre part, la variabilité statistique dans les caractéristiques de transistor est l'un des défis principaux pour les prochaines générations technologiques. La connaissance détaillée des sources de variabilité est extrêmement importante pour la conception et la fabrication des dispositifs résistants à la variabilité. On constate que la dispersion des valeurs de courant de drain des dispositifs n-MOS plutôt petits de la technologie 28 nm est presque deux décades. Cela résulte de l'impact des dopants aléatoires, de la rugosité de bord des lignes et les variations d'épaisseur d'oxyde, qui est plutôt bien compris, ainsi que du rôle du matériau de grille, en poly silicium ou en métal seulement, qui n a été que récemment étudié dans les simulations. La confirmation et la quantification expérimentales de la contribution du bruit et des fluctuations BF manquent toujours. En outre, l'étude de la variabilité du bruit BF et de sa relation avec les autres facteurs des variations des dispositifs n'a été jamais effectuée. Par conséquent, les défis de recherches et les objectifs de cette thèse sont centrés vers les études des fluctuations basses fréquences et du bruit dans les technologies CMOS 32nm et au-delà. Plus spécifiquement, le bruit BF sera étudié avec trois objectifs : i) la caractérisation détaillée du bruit BF des nouvelles technologies CMOS comportant des grilles avec high-k/métal, des poches de canal etc., ii) le changement des paramètres de bruit BF des différentes technologies et iii) l'impact du bruit BF et des fluctuations RTS en tant que sources de variabilité pour des applications de circuit analogique et numérique. Le premier objectif adressera l'origine des fluctuations de BF dans des dispositifs CMOS en termes de densité de piège et de localisation des défauts dans le diélectrique de grille et avec la longueur du canal pour différentes architectures (poche, canal de germanium, FD-SOI etc.). La deuxième partie considérera la variabilité du bruit BF résultant de la dispersion énorme des sources de bruit de dispositif à dispositif ; ceci sera conduit grâce à des mesures statistiques des caractéristiques de bruit de BF en fonction de la surface des dispositifs et des générations technologiques. Le troisième objective se concentrera sur l'impact du bruit de BF ou des fluctuations RTS sur le fonctionnement des circuits élémentaires (inverseur, cellule SRAM) et considérés en tant que source temporelle de variabilité. Nous allons aborder ces trois questions une après l autre dans les paragraphes suivants.Low frequency (LF) noise and fluctuations in MOS devices has been the subject of intensive research during the past years. The LF noise is becoming a major concern for continuously scaled down devices, since the 1/f noise increases as the reciprocal of the device area. Excessive low frequency noise and fluctuations could lead to serious limitation of the functionality of the analog and digital circuits. The 1/f noise is also of paramount importance in RF circuit applications where it gives rise to phase noise in oscillators or multiplexors. The development of submicronic CMOS technologies has led to the onset of new type of noises, i.e. random telegraph signals (RTS), yielding large current fluctuations, which can jeopardize the circuit functionality. However, the statistical variability in the transistor characteristics is one of the major challenges for upcoming technological nodes. The detailed knowledge of variability sources is extremely important for the design and manufacturing of variability resistant devices. Whereas the impact of random dopants, line edge roughness and oxide thickness variations is relatively well understood, the role of the polysilicon or metal gate material has only lately been investigated in simulations and experimental confirmation and quantification of its contribution is still lacking. In addition, the study of LFN variability behavior and maybe its relation with the other factors of device variations has never been done. Therefore, the research challenges and objectives of this thesis are centered towards the studies of low frequency fluctuations and noise in 32 nm CMOS technologies and beyond. More specifically, the objectives of the LF noise investigation is summarized in the following points: i) Detailed LF noise characterization of new CMOS technologies featuring high- metal gate stacks, channel pockets etc, ii) change of LF noise parameters from different technologies and iii) impact of LF noise and RTS fluctuations as a variability sources for analog and digital circuits. The first objective addresses the origin of the LF fluctuations in CMOS devices in terms of trap density and defect localization in the gate dielectric and along the channel for various architectures (pocket, Ge channel, FD-SOI etc). The second objective considers the LF noise variability resulting from huge dispersion of noise sources from device to device; this is conducted owing to statistical measurements of LF noise characteristics as a function of device area and technological splits. The third issue is focused on the impact of LF noise or RTS fluctuations on the operation of elementary circuits (inverter, SRAM cell) regarded as temporal variability source.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore