192 research outputs found

    A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification

    Get PDF
    The growth of environmental awareness and more robust enforcement of numerous regulations to reduce greenhouse gas (GHG) emissions have directed efforts towards addressing current environmental challenges. Considering the Vehicle Routing Problem (VRP), one of the effective strategies to control greenhouse gas emissions is to convert the fossil fuel-powered fleet into Environmentally Friendly Vehicles (EFVs). Given the multitude of constraints and assumptions defined for different types of VRPs, as well as assumptions and operational constraints specific to each type of EFV, many variants of environmentally friendly VRPs (EF-VRP) have been introduced. In this paper, studies conducted on the subject of EF-VRP are reviewed, considering all the road transport EFV types and problem variants, and classifying and discussing with a single holistic vision. The aim of this paper is twofold. First, it determines a classification of EF-VRP studies based on different types of EFVs, i.e., Alternative-Fuel Vehicles (AFVs), Electric Vehicles (EVs) and Hybrid Vehicles (HVs). Second, it presents a comprehensive survey by considering each variant of the classification, technical constraints and solution methods arising in the literature. The results of this paper show that studies on EF-VRP are relatively novel and there is still room for large improvements in several areas. So, to determine future insights, for each classification of EF-VRP studies, the paper provides the literature gaps and future research needs

    Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation

    Full text link
    [EN] The increasing use of electric vehicles in road and air transportation, especially in last-mile delivery and city mobility, raises new operational challenges due to the limited capacity of electric batteries. These limitations impose additional driving range constraints when optimizing the distribution and mobility plans. During the last years, several researchers from the Computer Science, Artificial Intelligence, and Operations Research communities have been developing optimization, simulation, and machine learning approaches that aim at generating efficient and sustainable routing plans for hybrid fleets, including both electric and internal combustion engine vehicles. After contextualizing the relevance of electric vehicles in promoting sustainable transportation practices, this paper reviews the existing work in the field of electric vehicle routing problems. In particular, we focus on articles related to the well-known vehicle routing, arc routing, and team orienteering problems. The review is followed by numerical examples that illustrate the gains that can be obtained by employing optimization methods in the aforementioned field. Finally, several research opportunities are highlighted.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T), the SEPIE Erasmus+Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Do C. Martins, L.; Tordecilla, RD.; Castaneda, J.; Juan-Pérez, ÁA.; Faulin, J. (2021). Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies. 14(16):1-30. https://doi.org/10.3390/en14165131130141

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe

    A linearized approach for the electric light commercial vehicle routing problem combined with charging station siting and power distribution network assessment

    Get PDF
    Transportation electrification has demonstrated a significant position on power utilities and logistic companies, in terms of assets operation and management. Under this context, this paper presents the problem of seeking feasible and good quality routes for electric light commercial vehicles considering battery capacity and charging station siting on the power distribution system. Different transportation patterns for goods delivery are included, such as the capacitated vehicle routing problem and the shortest path problem for the last mile delivery. To solve the problem framed within a mixed integer linear mathematical model, the GAMS software is used and validated on a test instance conformed by a 19-customer transportation network, spatially combined with the IEEE 34 nodes power distribution system. The sensitivity analysis, performed during the computational experiments, show the behavior of the variables involved in the logistics operation, i.e., routing cost for each transport pattern. The trade-off between the battery capacity, the cost of the charging station installation, and energy losses on the power distribution system is also shown, including the energy consumption cost created by the charging operation.Universidad Tecnológica de Bolíva

    A green logistics solution for last-mile deliveries considering e-vans and e-cargo bikes

    Get PDF
    Abstract The environmental challenges and the initiatives for sustainable development in urban areas are mainly focused on eco-friendly transportation systems. Therefore, we introduce a new green logistics solution for last-mile deliveries considering synchronization between e-vans and e-cargo bikes, developed as a Two-Echelon Electric Vehicle Routing Problem with Time Windows and Partial Recharging (2E-EVRPTW-PR). The first echelon represents an urban zone, and the second echelon represents a restricted traffic zone (e.g., historical center) in which e-vans in the first and e-cargo bikes in the second echelon are used for customers' deliveries. The proposed 2E-EVRPTW-PR model aims to minimize the total costs in terms of travel costs, initial vehicles' investment costs, drivers' salary costs, and micro-depot cost. The effectiveness of the proposed solution has been demonstrated comparing two different cases, i.e., the EVRPTW-PR considering e-vans for the first case, and the 2E-EVRPTW-PR considering e-vans and e-cargo bikes for the second case. The comparison has been carried out on existing EVRPTW-PR instances for the first case, and on novel 2E-EVRPTW-PR instances for the second case, in which customers of initial EVRPTW-PR instances have been divided into two zones (urban and restricted traffic zones) by using Fuzzy C-mean clustering. Moreover, results encourage logistics companies to adopt zero-emission strategies for last-mile deliveries, especially in restricted traffic zones
    corecore