8,415 research outputs found

    Prospects of electric vehicles in the developing countries : a literature review

    Get PDF
    Electric mobility offers a low cost of travel along with energy and harmful emissions savings. Nevertheless, a comprehensive literature review is missing for the prospects of electric vehicles in developing countries. Such an overview would be instrumental for policymakers to understand the barriers and opportunities related to different types of electric vehicles (EVs). Considering the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, a systematic review was performed of the electronic databases Google Scholar and Web of Science for the years 2010–2020. The electric four-wheelers, hybrid electric vehicles and electric two-wheeler constituted the electric vehicles searched in the databases. Initially, 35 studies identified in the Web of Science that matched the criteria were studied. Later, 105 other relevant reports and articles related to barriers and opportunities were found by using Google Scholar and studied. Results reveal that electric four-wheelers are not a feasible option in developing countries due to their high purchase price. On the contrary, electric two-wheelers may be beneficial as they come with a lower purchase price

    Towards a real-time microscopic emissions model

    Get PDF
    This article presents a new approach to microscopic road traffic exhaust emission modelling. The model described uses data from the SCOOT demand-responsive traffic control system implemented in over 170 cities across the world. Estimates of vehicle speed and classification are made using data from inductive detector loops located on every SCOOT link. This data feeds into a microscopic traffic model to enable enhanced modelling of the driving modes of vehicles (acceleration, deceleration, idling and cruising). Estimates of carbon monoxide emissions are made by applying emission factors from an extensive literature review. A critical appraisal of the development and validation of the model is given before the model is applied to a study of the impact of high emitting vehicles. The article concludes with a discussion of the requirements for the future development and benefits of the application of such a model

    Working Paper 13-10 - Electric cars: Back to the future?

    Get PDF
    The main objective of the paper is to evaluate the development of the EV in a couple of selected energy scenarios, to address the influence climate policy and the presence of nuclear energy can have on this development and to estimate the impact of different EV penetration rates on electricity demand. Throughout the paper, it becomes clear that, in the absence of specific, dedicated EV public programmes, policies and measures aimed at curbing climate change spark off the penetration of EVs, especially on a longer time horizon (up to 2030): with post 2012 climate policy in place, the pure EV penetration in 2020 attains approximately 2% of the road vehicle fleet while in 2030, around 5% of the road vehicle fleet will be electrically propelled. In the time span up to 2020, the electricity consumption of the EVs is rather small: it ranges between 0.4 and 0.5 TWh. It isn't until 2025 and 2030 that EVs start to have a more visible impact on electricity consumption, stretching out between 1.2 and 1.4 TWh which represents approximately 1% of the total final electricity demand in 2030. Nuclear energy can then be a modest incentive for EVs through, assuming perfect market functioning, a decrease in electricity prices, hence triggering a slightly higher EV penetration. This paper assumes that no specific dedicated policies are in place to stimulate the upsurge of EVs. If policy makers decide they want to support and even intensify the expansion of EVs considering their positive impact on oil independency, climate change, transport efficiency and possibly job retention/creation, further policy measures (beyond climate policy) embedded in a long term national master plan are of utmost importance.Electric vehicles, Electricity demand, Climate change

    Driving style recognition for intelligent vehicle control and advanced driver assistance: a survey

    Get PDF
    Driver driving style plays an important role in vehicle energy management as well as driving safety. Furthermore, it is key for advance driver assistance systems development, toward increasing levels of vehicle automation. This fact has motivated numerous research and development efforts on driving style identification and classification. This paper provides a survey on driving style characterization and recognition revising a variety of algorithms, with particular emphasis on machine learning approaches based on current and future trends. Applications of driving style recognition to intelligent vehicle controls are also briefly discussed, including experts' predictions of the future development

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Evaluation of European electric vehicle support schemes

    Get PDF
    Electric vehicles can reduce carbon dioxide emissions, increase energy efficiency, and help to reduce the dependency on oil imports. However, today's technical and economic challenges are preventing mass-market adoption. In order to create an early market and support economies of scale in production, some European countries have already established support schemes. This research study aims to provide an overview of the existing support schemes in Europe and to assess them using four criteria: effectiveness, efficiency, practicability, and political acceptance. The study concludes with an impact analysis of today's economic support schemes which considers the total costs of ownership. While one-time support schemes help to reduce the large initial investments for EVs, recurring instruments are often more effective and efficient but also smaller in volume. The comparison of the different regional incentive schemes reveals that EVs today are only economically attractive in Denmark and Norway, but at relatively high prices. Thus, regulators need to increase the volume and efficiency of the support schemes, establish high scoring instruments, and align these on a European scale. In addition, non-monetary support, e.g. free-parking, can help to overcome technical or smaller economic hurdles. --
    corecore