1,223 research outputs found

    ELECTRICITY CONSUMPTION PREDICTION SYSTEM USING A RADIAL BASIS FUNCTION NEURAL NETWORK

    Get PDF
    The observed poor quality of service being experienced in the power sector of Nigeria economy has been traced to non-availability of adequate model that can handle the inconsistencies associated with traditional statistical models for predicting consumers’ electricity need, so as to bridge the gap between the demand and supply of the energy. This research presents Electricity Consumption Prediction System (ECPS) based on the principle of radial basis function neural network to predict the country’s electricity consumption using the historical data sourced from Central Bank of Nigeria (CBN) annual statistical bulletin. The entire datasets used in the study were divided into train, validation and test sets in the ratio of 13:3:4. By the above, 65% of the entire data were used for the training, 15% for validation and 20% for testing. The train data was presented to the constructed models to approximate the function that maps the input patterns to some known target values. The models were also used to simulate both validation and the test datasets as case data on the consistency of results obtained from the training session through the train data. Experimental results showed that RBF network model performs better than equivalent Backpropagation (BP) network models that were compared with it and provides the best platform for developing a forecast system.

    A Review of Short Term Load Forecasting using Artificial Neural Network Models

    Get PDF
    AbstractThe electrical short term load forecasting has been emerged as one of the most essential field of research for efficient and reliable operation of power system in last few decades. It plays very significant role in the field of scheduling, contingency analysis, load flow analysis, planning and maintenance of power system. This paper addresses a review on recently published research work on different variants of artificial neural network in the field of short term load forecasting. In particular, the hybrid networks which is a combination of neural network with stochastic learning techniques such as genetic algorithm(GA), particle swarm optimization (PSO) etc. which has been successfully applied for short term load forecasting (STLF) is discussed thoroughly

    A Survey on Data Mining Techniques Applied to Energy Time Series Forecasting

    Get PDF
    Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting. Although classical statistical-based methods provides reasonably good results, the result of the application of data mining outperforms those of classical ones. Hence, this work faces two main challenges: (i) to provide a compact mathematical formulation of the mainly used techniques; (ii) to review the latest works of time series forecasting and, as case study, those related to electricity price and demand markets.Ministerio de Economía y Competitividad TIN2014-55894-C2-RJunta de Andalucía P12- TIC-1728Universidad Pablo de Olavide APPB81309

    Short-Term Electricity Demand Forecasting with Machine Learning

    Get PDF
    Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsAn accurate short-term load forecasting (STLF) is one of the most critical inputs for power plant units’ planning commitment. STLF reduces the overall planning uncertainty added by the intermittent production of renewable sources; thus, it helps to minimize the hydro-thermal electricity production costs in a power grid. Although there is some research in the field and even several research applications, there is a continual need to improve forecasts. This project proposes a set of machine learning (ML) models to improve the accuracy of 168 hours forecasts. The developed models employ features from multiple sources, such as historical load, weather, and holidays. Of the five ML models developed and tested in various load profile contexts, the Extreme Gradient Boosting Regressor (XGBoost) algorithm showed the best results, surpassing previous historical weekly predictions based on neural networks. Additionally, because XGBoost models are based on an ensemble of decision trees, it facilitated the model’s interpretation, which provided a relevant additional result, the features’ importance in the forecasting

    Monthly Energy Consumption Forecasting Using Wavelet Analysis and Radial Basis Function Neural Network

    Get PDF
    Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to pay their electricity bills and also draw the attention of management and stakeholders to electricity consumption levels so that energy efficiency measures are put in place to reduce cost. In this paper, a wavelet transform and radial basis function neural network based energy forecast model is developed to predict monthly energy consumption. The model was developed using the monthly energy consumption of Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana for a 9-year period. A mean absolute percentage error of 7.94% was achieved when the forecast model was tested over a 60-month period.Keywords: Load forecasting, artificial neural network, radial basis function, wavelet transfor

    Neural-Based Ensembles and Unorganized Machines to Predict Streamflow Series from Hydroelectric Plants

    Get PDF
    Estimating future streamflows is a key step in producing electricity for countries with hydroelectric plants. Accurate predictions are particularly important due to environmental and economic impact they lead. In order to analyze the forecasting capability of models regarding monthly seasonal streamflow series, we realized an extensive investigation considering: six versions of unorganized machines—extreme learning machines (ELM) with and without regularization coefficient (RC), and echo state network (ESN) using the reservoirs from Jaeger’s and Ozturk et al., with and without RC. Additionally, we addressed the ELM as the combiner of a neural-based ensemble, an investigation not yet accomplished in such context. A comparative analysis was performed utilizing two linear approaches (autoregressive model (AR) and autoregressive and moving average model (ARMA)), four artificial neural networks (multilayer perceptron, radial basis function, Elman network, and Jordan network), and four ensembles. The tests were conducted at five hydroelectric plants, using horizons of 1, 3, 6, and 12 steps ahead. The results indicated that the unorganized machines and the ELM ensembles performed better than the linear models in all simulations. Moreover, the errors showed that the unorganized machines and the ELM-based ensembles reached the best general performances
    corecore