1,218 research outputs found

    Analysis of the impact of EMF exposure in 5G deployments

    Get PDF
    Abstract. 5G or fifth-generation mobile network is being developed to meet the massive increase in data and connectivity, and it connects billions of devices via the internet of things. A significant advantage of 5G is the fast response time, also known as latency, which is delivered by faster connections and greater capacity. As 5G is using high frequencies such as above 6GHz, people are concerned about this electromagnetic field (EMF) exposure because it uses a large number of transmitters. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) issued guidelines to protect humans and the environment from radio frequency electro magnetic field (RF-EMF) exposure in the frequency range of 100kHz-300GHz. These constraints are expressed in terms of specific absorption rate (SAR), electric and magnetic field strength, and power density. The goal of this thesis is to analyse the impact of EMF exposure in 5G deployment. The first step was to examine the EMF and its characteristics in general and in 5G in particular. Characteristics of 5G which are relevant to the electromagnetic field were then analyzed. The regulations related to human exposure to EMF were investigated globally, regionally, and in selected countries and compared with the key parameters including incident electric field strength, incident magnetic field strength, and incident power strength. To analyze the impact of the EMF in 5G two methods were used to assess EMF exposure: calculating the minimum distance and assessing the power density. Power density assessments were done for three different frequency bands (700MHz,1800MHz, and 3.5GHz), five different environmental scenarios (indoor hotspot, dense urban, rural, urban macro massive machine-type communications (mMTC), urban micro ultra-reliable low-latency communications (URLLC), and four different scenarios of a typical 5G network (indoor hotspot, dense urban, micro, micro remote radio head (RRH)), and by co-locating the three transmitters in the frequency bands 700MHz,1800MHz and 3.5GHz. The results of the power density assessment in frequency bands 700MHz,1800Mhz, and 3.5GHz show that there is no EMF exposure near the transmitters. However, with the simulation results, we can see that there is an EMF exposure near the transmitter when considering various scenarios such as dense urban, rural, urban macro mMTC, urban micro URLLC, micro and micro remote radio head (RRH). With the simulation results of co-locating transmitters also we can see that there is also EMF exposure close to the transmitters. So, when deploying the 5G network in these environmental conditions, EMF regulations and limitations should be taken into greater account and deployment should be carried out to minimize this exposure. Thus, when planning the 5G network this exposed area should be included as a restricted area that the general public cannot access

    License Amendment Request for Proposed Revision to Humboldt Bay Site Emergency Plan

    Get PDF
    PG&E Letter HBL-14-016 PG&E Letter HIL-14-006 10 CFR 50 Appendix E, 10 CFR 50.54 10 CFR 50.4, 10 CFR 50.90 10 CFR 50.47, 10 CFR 72.32 10 CFR 72.4

    License Amendment Request for Proposed Revision to Humboldt Bay Site Emergency Plan

    Get PDF
    PG&E Letter HBL-14-016 PG&E Letter HIL-14-006 10 CFR 50 Appendix E, 10 CFR 50.54 10 CFR 50.4, 10 CFR 50.90 10 CFR 50.47, 10 CFR 72.32 10 CFR 72.4

    Power Grid Recovery after Natural Hazard Impact

    Get PDF
    Natural hazards can affect the electricity supply and result in power outages which can trigger accidents, bring economic activity to a halt and hinder emergency response until electricity supply is restored to critical services. This study analyzes the impact of earthquakes, space weather and floods on the power grid recovery time. For this purpose, forensic analysis of the performance of the power grid during 16 earthquakes, 15 space weather events and 20 floods was carried out. The study concluded that different natural hazards affect the power grid in different ways. Earthquakes cause inertial damage to heavy equipment and brittle items, and ground failure and soil liquefaction can be devastating to electric infrastructure assets. Recovery time is driven by the balance of repairs and capabilities. Poor access to damaged facilities, due to landslides or traffic congestion, can also delay repairs. In this study, recovery time ranged from a few hours to months, but more frequently from 1 to 4 days. Floods are commonly associated with power outages. Erosion due to the floodwaters and landslides triggered by floods undermine the foundations of transmission towers. Serious, and often explosive, damage may occur when electrified equipment comes in contact with water, while moisture and dirt intrusion require time-consuming repairs of inundated equipment. Recovery time was driven by the number of needed repairs, and site access, as repairs cannot start until floodwaters have receded. In this study, power was back online from 24 hours up to 3 weeks after the flood. However, longer recovery times (up to 5 weeks) were associated with floods spawned by hurricanes and storms. Space weather affects transmission and generation equipment through geomagnetically induced currents (GICs). In contrast to earthquakes and floods, GICs have the potential to impact the entire transmission network. Delayed effects and the potential for system-wide impact were the main drivers of recovery time in this study. When damage is limited to tripping of protective devices, restoration time is less than 24 hours. However, repairs of damaged equipment may take up to several months. The study concludes with a number of recommendations related to policy, hazard mitigation and emergency management to reduce the risks of natural hazards to electric infrastructure and to improve crisis management in the aftermath of a natural disaster.JRC.E.2-Technology Innovation in Securit

    Telemedicine and its application in telemedicine management

    Get PDF
    Telemedicine can be defined as the extensive depiction of providing medical and healthcare services by using telecommunications structures. Information Technology (IT) which covers controlling, interactive media, pattern recognition, knowledge management, image and signal processing: have empowered an extensive array of telemedicine applications to be supported. The joined consequence of the expansion of the global population and maturing populace in most advanced countries offersascent to an increasing interest on the public health system. The effect on public health systems in various nations were further empowered by a change in the lifestyle and environmental contamination which further increases the demand for health systems. This is obvious from the pattern of perpetual ailments and complication arising from obesity-related conditions which attack youthful individuals over the previous decade. Currently, the financial prosperity which blesses the present generation is a result of the diligent work done by our fore fathers and the rapacious exploitation of the natural resources that will eventually cause various issues to the upcoming generation. Therefore, we should seize the responsibility of caring for the elderly who tirelessly sacrificed their time for the betterment of the current generation. Nevertheless, we are attempting to upgrade medicinal technology to enhance our well-being, and to furnish a supportable healthcare system for the upcoming era. Telemedicine is poised as a means of fulfilling our obligations to the adolescents and the elderly

    Fuzz sensoring

    Get PDF
    Treball desenvolupat en el marc del programa "European Project Semester".Traffic congestion is a significant problem which affects smoothness in transportation in many cities around the world. It is unavoidable due to increasing numbers of vehicles and overuse of roads in large and growing metropolises. Although, there are several policies that are implemented to reduce traffic congestion, such as improvement of public transport, car and motorcycle restriction on several roads, and an even-odd license plate policy, the major problem involves getting data in order to predict and avoid traffic. Information can be collected from many sources such as: city sensors, GPS, as well as, from many application programming interfaces (API) provided by different companies. The project involves gathering sources and information about traffic congestion in order to create guidelines which can be essential in creating a traffic map of Vilanova i la Geltrú in the future. Eventually, the guidelines to the city of Vilanova i la Geltrú are provided, consisting of analysis of traffic inside the city, IoT management, choices of APIs, effective selection of sensors, and cost analysis to vastly improve traffic flow.Incomin

    The Ledger and Times, April 13, 1957

    Get PDF

    Fusion, 2007

    Get PDF
    https://hsrc.himmelfarb.gwu.edu/smhs_fusion/1000/thumbnail.jp
    • …
    corecore