1,497 research outputs found

    AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    Get PDF
    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity

    Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats

    Get PDF
    OBJECTIVES:To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion.METHODS:In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day.RESULTS:The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers.CONCLUSIONS:Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury

    Mesenchymal Stem Cells in Spinal Cord Injury

    Get PDF

    Study of the neuroprotection mechanisms in a model of spinal cord injury in vitro

    Get PDF
    Excitotoxicity is the major contributor to the pathophysiological damage after acute spinal cord injury which is often incomplete, yet it produces paralysis with uncertain outcome for gait recovery despite early intensive care support. Neuroprotecting the spinal cord during the early phase of injury is an important goal to determine a favourable outcome to suppress delayed pathological events that extend the primary damage and amplify the loss of motor function often with irreversible consequences. While intensive care and neurosurgical intervention remain mainstay treatments, effective neuroprotection requires further focused experimental studies under controlled conditions. To better understand the pathophysiological mechanism of spinal lesion an in vitro model of rat spinal cord has been developed by our laboratory whereby injury is mimicked by a moderate excitotoxic insult. Such an injury suppresses the locomotor networks together with partial loss of motoneuronal population. The present thesis explores if the volatile general anesthetic methoxyflurane can protect spinal locomotor networks from kainate induced excitotoxicity and whether motoneuronal survival after excitotoxicity relies on cell expression of heat shock protein 70 (HSP70), a cytosolic neuroprotective protein binding and sequestering metabolic distress-generated proteins. The protocols involved 1 h excitotoxic stimulation on day 1 followed by electrophysiological and immunohistochemical testing after 24 h. A time-limited (1 h), single administration of methoxyfluorane together with kainate (or with 30 min or 60 min delay), prevented any depression of spinal reflexes, loss of motoneuron excitability, and histological damage. Methoxyfluorane per se temporarily decreased synaptic transmission and motoneuron excitability. These effects were readily reversible on washout. When methoxyfluorane was applied with or after kainate, spinal locomotor activity recorded as alternating electrical discharges from lumbar motor pools was fully preserved after 24 h. Furthermore to test the second hypothesis, the motoneurons were investigated for their expression of apoptosis inducing factor (AIF; a known biomarker of cell death) which became preferentially localized to the nucleus in pyknotic cells after excitotoxicity. The surviving motoneurons showed strong expression of HSP70 with no nuclear AIF. The sham preparations did not show any AIF nuclear translocation whereas the preparations treated with kainate (100 \ub5M) were the most affected. VER155008, a pharmacological inhibitor of HSP70, per se induced neurotoxicity comparable to that of kainate. Electrophysiological recording indicated depression of motoneuron field potential with strong decrease in excitability and impaired synaptic transmission following kainate or VER155008. Their combined application elicited more intense neurotoxicity. Interestingly, motoneurons in the spinal cord (24 h in vitro) showed large expression of HSP70 compared to freshly dissected tissue, suggesting that HSP70 up-regulation was critical for spinal cord preparation survival in vitro. These data suggest that a volatile general anesthetic could provide strong electrophysiological and histological neuroprotection that enabled retention of locomotor network activity even one day after the excitotoxic challenge. Our study also showed that HSP70 is important for motoneuronal survival. It is hypothesized that the benefits of early neurosurgery for acute SCI might be enhanced if, in addition to injury decompression and stabilization, the protective role of general anesthesia is maximized. Another potential future strategy to neuroprotect motoneurons could be the upregulation of HSP70 activity by either using its pharmacological enhancers or by inducing its over-expression

    Toll-like receptors in spinal cord derived neural precursor cells: implications on spinal cord injury and cell transplantation

    Full text link
    [ES] Los receptores tipo Toll, TLR, son receptores clave en la defensa contra los patógenos capaces de iniciar la respuesta inmunitaria innata para proteger al huésped. Su papel no solo se relega a responder a estímulos foráneos, sino que también pueden detectar daños en los tejidos o células lesionadas induciendo su respuesta a lo que se conoce como "inflamación estéril". Las células del sistema inmunitario no son las únicas que presentan TLR; también se encuentran en células de la glía, neuronas y precursores neurales (NPC). Concretamente, TLR2 y TLR4 en NPC en cerebro contribuyen a la determinación del destino celular y plasticidad neuronal durante el desarrollo. Sin embargo, sus funciones en la fisiología y patología de la médula espinal no están bien definidas, así como en procesos críticos como la neurogénesis, autorrenovación o proliferación. Esta tesis doctoral, distribuida entre tres capítulos, se ha centrado 1) en el estudio del papel de TLR2 y TLR4 en precursores derivados de medula espinal neonatal (Capítulo 1); 2) en evaluar el papel de ambos, TLR2 y TLR4 en el proceso de regeneración espontánea o tras trasplante ectópico de NPC, en un modelo de lesión medular inducida (Capítulo 2); 3) en el estudio del papel de TLR4 en la modulación del fenotipo inflamatorio en respuesta al proteoglicano condroitín sulfato (CSPG) secretado tras la lesión medular con actividad inhibitoria del recrecimiento axonal tras lesión medular (Capítulo 3).[CA] Els receptors tipus Toll, TLR, són receptors clau en la defensa contra els patògens capaços d'iniciar la resposta immunitària innata per a protegir l'hoste. El seu paper no sols es relega a respondre a estímuls forans, sinó que també poden detectar danys en els teixits o cèl·lules lesionades induint la seua resposta al que es coneix com a "inflamació estèril". Les cèl·lules del sistema immunitari no són les úniques que presenten TLR; també es troben en cèl·lules de la glia, neurones i precursors neurals (NPC). TLR2 i TLR4 en NPC en cervell contribueixen a la determinació del destí cel·lular i plasticitat neuronal. No obstant això, les seues funcions en la fisiopatologia de la medul·la espinal no estan ben definides, així com en processos crítics com la neurogènesi, autorenovació o proliferació. Aquesta tesi doctoral, distribuïda entre tres capítols, s'ha centrat: 1) En l'estudi del paper de TLR2 i TLR4 en precursors derivats de medul·la espinal neonatal (Capítol 1); 2) A avaluar el paper de tots dos, TLR2 i TLR4, en el procés de regeneració espontània o després de trasplantament ectòpic de NPC, en un model de lesió medul·lar induïda (Capítol 2); 3) En l'estudi del paper de TLR4 en la modulació del fenotip inflamatori en resposta al proteoglicà condroití sulfat (CSPG) secretat després de la lesió medul·lar amb activitat inhibitòria del recreixement axonal després de lesió medul·lar (Capítol 3).[EN] Toll-like receptors, TLRs, are key receptors in the defence against pathogens capable of initiating the innate immune response to protect the host. Their role is not only limited to responding to foreign stimuli, but they can also detect damage to injured tissues or cells, inducing their response to what is known as 'sterile inflammation'. Immune system cells are not the only cells that display TLRs; they are also found in glial cells, neurons and neural precursors cells (NPCs). TLR2 and TLR4 NPCs from brain contribute to cell fate determination and neuronal plasticity. However, their roles in spinal cord pathophysiology and in critical processes such as neurogenesis, self-renewal or proliferation are not well defined. This doctoral thesis, distributed among three chapters, has focused: 1) on the study of the role of TLR2 and TLR4 in neonatal spinal cord-derived precursors (Chapter 1); 2) on evaluating the role of both TLR2 and TLR4 in the process of spontaneous regeneration or after ectopic transplantation of NPC, in a model of induced spinal cord injury (Chapter 2); 3) to study the role of TLR4 in modulating the inflammatory phenotype in response to chondroitin sulphate proteoglycan (CSPG) secreted after spinal cord injury with inhibitory activity on axonal regrowth after spinal cord injury (Chapter 3).The student has been granted with a PhD fellowship from a predoctoral program at the CIPF and with International Research and Training Exchange Programme at the CIPF. This work has been supported by the Spanish Ministry of Economy and Competitiveness (projects RTI2018-095872-B-C21; MAT2015-66666-C3-R; SAF2015-69187R) and Spanish Ministry of Heath, PNSD2018 I003.Sánchez Petidier, M. (2022). Toll-like receptors in spinal cord derived neural precursor cells: implications on spinal cord injury and cell transplantation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180753TESI

    Mechanisms of Peripheral Nerve Injury – What to Treat, When to Treat

    Get PDF

    Peripheral nerve injury and axonotmesis: State of the art and recent advances

    Get PDF
    Peripheral nerve lesions are frequent occurrences in both human and animal patients, leading to important physiological and labor complications that affect the quality of life of those who suffer the injury. More severe injuries are often associated with poor nerve regeneration and inadequate functional recovery, even with early medical and surgical interventions. Peripheral nerve crush lesions are frequent and, therefore, an experimental lesion paradigm widely used in researches involving nerve injury models and therapies for its resolution. In recent years, many studies have focused on innovative approaches to peripheral nerve treatment after crush injuries with more or less success. This review addresses the theme of peripheral nerve injury, with a special focus on the axonotmesis lesion, its etiology, pathophysiological mechanisms, methods of functional evaluation and regenerative processes, therapeutic options and corresponding recent advances

    Pathophysiology and therapeutic approaches for spinal cord injury

    Get PDF
    Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.This work has been funded by National funds, through the Foundation for Science and Technology (FCT)-project UIDB/50026/2020, UIDP/50026/2020 and project EXPL/MED-PAT/0931/2021. Financial support was also provided from Prémios Santa Casa Neurociências-Prize Melo e Castro for Spinal Cord Injury Research (MC-18-2021)

    A Single Neonatal Injury Induces Life-Long Adaptations In Stress And Pain Responsiveness

    Get PDF
    Approximately 1 in 6 infants are born prematurely each year. Typically, these infants spend 25 days in the Neonatal Intensive Care Unit (NICU) where they experience 10-18 painful and inflammatory procedures each day. Remarkably, pre-emptive analgesics and/or anesthesia are administered less than 30% of the time. Unalleviated pain during the perinatal period is associated with permanent decreases in pain sensitivity, blunted cortisol responses and high rates of neuropsychiatric disorders. To date, the mechanism(s) by which these long-term changes in stress and pain behavior occur, and whether such alterations can be prevented by appropriate analgesia at the time of injury, remains unclear. We have previously reported in rats that inflammation experienced on the day of birth permanently upregulates central opioid tone, resulting in a significant reduction in adult pain sensitivity. However, the impact on early life pain on anxiety- and stress-related behavior and HPA axis regulation is not known. Therefore the goal of this dissertation was to determine the long-term impact of a single neonatal inflammatory pain experience on adult anxiety- and stress-related responses. Neuroanatomical changes in stress-associated neurocircuits were also examined. As the endogenous pain control system and HPA axis are in a state of exaggerated developmental plasticity early in postnatal life, and these systems work in concert to respond to noxious or aversive stimuli, this dissertation research aimed to answer the following questions: (1) Does neonatal injury produce deficits in adult stress-related behavior and alter stress-related neuroanatomy through an opioid-dependent mechanism? (2) Does neonatal injury alter receptor systems regulating the activation and termination of the stress response in adulthood? (3) Are stress- and pain-related neurotransmitters altered within the first week following early life pain? (4) Is early activation of the pain system necessary for the long-term changes in anxiety- and stress-related behavior? Together these studies demonstrate the degree, severity and preventability of the long-term deficits in stress responding associated with a single painful experience early in life. The goal of this research is to promote change in the treatment of infant pain in the NICU to reduce long-term sensory and mental health complications associated with prematurity
    corecore