144 research outputs found

    Ergonomics processes: implementation guide and tools for the mining industry

    Get PDF
    "Research has shown that an ergonomics process that identifies risk factors, devises solutions to reduce musculoskeletal disorders (MSDs), and evaluates the effectiveness of the solutions can lower worker exposure to risk factors and MSDs and improve productivity. A review of the Mine Safety and Health Administration (MSHA) injury/illness database indicated that 46% of illnesses in 2004 were associated with repetitive trauma and 35% of nonfatal lost days involved material handling during 2001- 2004. Even though these statistics show that MSDs significantly contribute to occupational illnesses and injuries in the U.S. mining industry, few mining companies have implemented an ergonomics process. Despite the many unique challenges in the mining environment, three mining companies partnered with the MSD Prevention Team at the National Institute for Occupational Safety and Health's Pittsburgh Research Laboratory to demonstrate that an ergonomics process could be systematically implemented and effectively integrated with existing safety and health programs. Because these three mining companies were very different in organization, culture, and size, the ergonomics processes had to be modified to meet the needs of each company. A description of how these three companies applied ergonomics and the tools and training used to implement their processes is given. Prior to discussing the case studies, general information on the elements of an ergonomics process is provided.' - NIOSHTIC-21. Introduction: Ergonomics and risk management -- 2. Ergonomics processes: case studies -- 3. Process effectiveness -- 4. Implementation tools -- 5. Training -- References -- Appendix: Ergonomics processes: beyond traditional safety and health programsby Janet Torma-Krajewski, Lisa J. Steiner, Robin Burgess-Limerick."February 2009."Also available via the World Wide Web.Includes bibliographical references

    A review on power electronics technologies for electric mobility

    Get PDF
    Concerns about greenhouse gas emissions are a key topic addressed by modern societies worldwide. As a contribution to mitigate such effects caused by the transportation sector, the full adoption of electric mobility is increasingly being seen as the main alternative to conventional internal combustion engine (ICE) vehicles, which is supported by positive industry indicators, despite some identified hurdles. For such objective, power electronics technologies play an essential role and can be contextualized in different purposes to support the full adoption of electric mobility, including on-board and off-board battery charging systems, inductive wireless charging systems, unified traction and charging systems, new topologies with innovative operation modes for supporting the electrical power grid, and innovative solutions for electrified railways. Embracing all of these aspects, this paper presents a review on power electronics technologies for electric mobility where some of the main technologies and power electronics topologies are presented and explained. In order to address a broad scope of technologies, this paper covers road vehicles, lightweight vehicles and railway vehicles, among other electric vehicles.This work has been supported by FCT – Fundação para a Ciência e Tecnologia with-in the Project Scope: UID/CEC/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017, and by the FCT Project new ERA4GRIDs PTDC/EEI-EEE/30283/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT

    BUSINESS LOGIC PLAN PENGEMBANGAN PRODUKSI FORMULA GARUDA 16 DALAM AJANG KOMPETISI STUDENT FORMULA JAPAN TAHUN 2016

    Get PDF
    Penelitian ini bertujuan untuk mengetahui proses penyusunan Business Logic Plan dan hasil dari Business Logic Plan yang meliputi ringkasan eksekutif dan presentasi bisnis dengan acuan regulasi Formula SAE 2016. Penelitian ini merupakan penelitian deskriptif kualitatif yang menggunakan metode observasi dalam pengumpulan data untuk memecahkan permasalahan. Jenis penelitian yang digunakan dalam penelitian ini adalah jenis penelitian deskriptif murni atau survei. Subyek yang diteliti pada penelitian ini adalah penyusunan Business Logic Plan pengembangan produksi Formula Garuda 16 dalam ajang kompetisi Student Formula Japan. Teknik analisis data menggunakan analisis deskriptif dengan menggunakan tiga langkah, yaitu reduksi data, penyajian data, dan verifikasi data dan penarikan kesimpulan. Hasil penelitian ini menunjukan bahwa pada proses penyusunan Business Logic Plan (BLP) dilakukan dalam beberapa tahap, yaitu analisis pasar, analisis daya beli konsumen, analisis penghasilan konsumen, analisis volume pasar, dan analisis persaingan. Setelah melakukan analisis tersebut kemudian menyusun strategi perusahaan yang berisi strategi pemasaran, strategi keuangan, strategi kendaraan, strategi bahan baku dan strategi manufaktur. Setelah dilakukan perhitungan, investor dapat berinvestasi sebesar $ 1.000.000 untuk perusahaan Garuda UNY Racing Team, investor akan mendapatkan payback period dalam waktu 2 tahun dan ownership sebesar 35 % dengan nilai ROI (Return of Investment) 51 % sedangkan BEP (Break Even Point) akan dicapai dalam waktu 2 tahun. Setelah dipresentasikan dalam kegiatan Student Formula Japan 2016, Garuda UNY Racing Team mendapatkan skor 48,75 poin sehingga mendapatkan posisi 18 dari total 92 tim yang telah lolos seleksi dokumen dari 106 World FSAE Team yang terdaftar

    A Systematic Approach to Human Powered Vehicle Design with an Emphasis on Providing Guidelines for Mentoring Students

    Get PDF
    The objective of this research is to provide guidebook that approaches the design of a human powered vehicle (HPV) from a systematic view for an ASME competition. The guidebook introduces students to design and enhances their current understanding related to design, general engineering principals, and engineering principals specific to HPVs. In terms of the design process a combination between the traditional design process and the systems engineering design process is discussed. From here the design process in broken into six main sections for the guidebook, and an evaluation section used to emphasis the usefulness of the guidebook. First an overall view of the traditional and system engineering design processes are given, along with an overview of the human powered vehicle competition (HPVC). This is followed by details of project planning and problem development. Next the conceptual stage is introduced where concept generation and evaluation methods and examples are discussed. Embodiment design is given in the following section, where solution variants are modeled in a preliminary layout. Next, methods of how to create a more defined preliminary layout are given in the detail design section were a definitive layout is established. Finally prototyping, testing, redesigns, and final design recommendations are outlined in the last section. In addition, the guidebook provided is meant to serve as a method that can be used to mentor students in the design process of an HPV. As such, the guidebook has been developed through a literature review of design theories, managerial, organizational, and engineering practices that have had beneficial impacts, and past experiences with designing HPVs. In terms of past experiences, the interactions with students involved in a creative inquiry at Clemson University have used as a subjective means to outline some of the important design considerations needed to be discussed. Additionally, Clemson\u27s HPVs have primarily consisted of tadpole tricycles and as such, a more in depth analysis is included for this particular HPV style

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    Functional requirements for the man-vehicle systems research facility

    Get PDF
    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included

    Engineering Dynamics and Life Sciences

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”
    corecore