4,446 research outputs found

    High-Power Directional Emission from Microlasers with Chaotic Resonators

    Full text link
    High-power and highly directional semiconductor cylinder-lasers based on an optical resonator with deformed cross section are reported. In the favorable directions of the far-field, a power increase of up to three orders of magnitude over the conventional circularly symmetric lasers was obtained. A "bow-tie"-shaped resonance is responsible for the improved performance of the lasers in the higher range of deformations, in contrast to "whispering-gallery"-type modes of circular and weakly deformed lasers. This resonator design, although demonstrated here in midinfrared quantum-cascade lasers, should be applicable to any laser based on semiconductors or other high-refractive index materials.Comment: Removed minor discrepancies with published version in the text and in Fig.

    Extragalactic jets with helical magnetic fields: relativistic MHD simulations

    Full text link
    Extragalactic jets are inferred to harbor dynamically important, organized magnetic fields which presumably aid in the collimation of the relativistic jet flows. We here explore by means of grid-adaptive, high resolution numerical simulations the morphology of AGN jets pervaded by helical field and flow topologies. We concentrate on morphological features of the bow shock and the jet beam behind the Mach disk, for various jet Lorentz factors and magnetic field helicities. We investigate the influence of helical magnetic fields on jet beam propagation in overdense external medium. We use the AMRVAC code, employing a novel hybrid block-based AMR strategy, to compute ideal plasma dynamics in special relativity. The helicity of the beam magnetic field is effectively transported down the beam, with compression zones in between diagonal internal cross-shocks showing stronger toroidal field regions. In comparison with equivalent low-relativistic jets which get surrounded by cocoons with vortical backflows filled by mainly toroidal field, the high speed jets demonstrate only localized, strong toroidal field zones within the backflow vortical structures. We find evidence for a more poloidal, straight field layer, compressed between jet beam and backflows. This layer decreases the destabilizing influence of the backflow on the jet beam. In all cases, the jet beam contains rich cross-shock patterns, across which part of the kinetic energy gets transferred. For the high speed reference jet considered here, significant jet deceleration only occurs beyond distances exceeding O(100Rj){\cal O}(100 R_j), as the axial flow can reaccelerate downstream to the internal cross-shocks. This reacceleration is magnetically aided, due to field compression across the internal shocks which pinch the flow.Comment: 16 pages, Astronomy and Astrophysics accepted for publicatio

    Patterned medium for heat assisted magnetic recording

    Get PDF
    Heat assisted magnetic recording (HAMR) a potential solution to extend the limits of conventional magnetic recording. In HAMR, the heating of the recording medium is achieved with a near-field optical transducer. Although the literature suggests novel transducers, there is little consideration of the optical and thermal aspects of the magnetic medium. In this letter we suggest a recording medium that provides a significant enhancement in optical absorption and localized heating. The thermal profiles of the proposed medium and the conventional medium are compared using finite element method solutions of Maxwell’s and the heat transfer equations

    Investigating dimensional and geometrical accuracy of isothermally forged blades

    Get PDF
    Compressor blades are one of the well-known products made of titanium alloys. They are usually manufactured by a forging process followed by a sequence of machining processes. Precision forging eliminates a considerable amount of machining; however, due to the close tolerances, the process should be designed in a manner to meet dimensional and geometrical tolerances as well as the desired mechanical and metallurgical properties. In this paper, effects of two main process parameters, the process temperature and strain rate, on the dimensional and geometrical accuracy of the isothermally forged blades are investigated experimentally. The results are analyzed by the response surface method (RSM). In order to justify the results and have a tool for further studies, a coupled thermo-mechanical finite element method model is developed and verified by the experimental results. The results show that the process temperature and pressing speed and their interaction have a meaningful effect on the thickness error; however, the interaction effect of the process temperature and pressing speed on the twist error is not considerable and moreover the bow error of the forged blades is not significant. Finally, the results show that for a given geometry, by selection of appropriate process parameters, a sound workpiece with acceptable dimensional and geometrical aspects can be manufactured without any need for a die shape compensation
    corecore