266 research outputs found

    Electric spring and smart load: technology, system-level impact and opportunities

    Get PDF
    Increasing use of renewable energy sources to combat climate change comes with the challenge of power imbalance and instability issues in emerging power grids. To mitigate power fluctuation arising from the intermittent nature of renewables, electric spring has been proposed as a fast demand-side management technology. Since its original conceptualization in 2011, many versions and variants of electric springs have emerged and industrial evaluations have begun. This paper provides an update of existing electric spring topologies, their associated control methodologies, and studies from the device level to the power system level. Future trends of electric springs in large-scale infrastructures are also addressed

    Hybrid stochastic/robust flexible and reliable scheduling of secure networked microgrids with electric springs and electric vehicles

    Get PDF
    Electric spring (ES) as a novel concept in power electronics has been developed for the purpose of dealing with demand-side management. In this paper, to conquer the challenges imposed by intermittent nature of renewable energy sources (RESs) and other uncertainties for constructing a secure modern microgrid (MG), the hybrid distributed operation of ESs and electric vehicles (EVs) parking lot is suggested. The proposed approach is implemented in the context of a hybrid stochastic/robust optimization (HSRO) problem, where the stochastic programming based on unscented transformation (UT) method models the uncertainties associated with load, energy price, RESs, and availability of MG equipment. Also, the bounded uncertainty-based robust optimization (BURO) is employed to model the uncertain parameters of EVs parking lot to achieve the robust potentials of EVs in improving MG indices. In the subsequent stage, the proposed non-linear problem model is converted to linear approximated counterpart to obtain an optimal solution with low calculation time and error. Finally, the proposed power management strategy is analyzed on 32-bus test MG to investigate the hybrid cooperation of ESs and EVs parking lot capabilities in different cases. The numerical results corroborate the efficiency and feasibility of the proposed solution in modifying MG indices.© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    MPC-Controlled Virtual Synchronous Generator to Enhance Frequency and Voltage Dynamic Performance in Islanded Microgrids

    Get PDF

    A Review of Active Management for Distribution Networks: Current Status and Future Development Trends

    Get PDF
    Driven by smart distribution technologies, by the widespread use of distributed generation sources, and by the injection of new loads, such as electric vehicles, distribution networks are evolving from passive to active. The integration of distributed generation, including renewable distributed generation changes the power flow of a distribution network from unidirectional to bi-directional. The adoption of electric vehicles makes the management of distribution networks even more challenging. As such, an active network management has to be fulfilled by taking advantage of the emerging techniques of control, monitoring, protection, and communication to assist distribution network operators in an optimal manner. This article presents a short review of recent advancements and identifies emerging technologies and future development trends to support active management of distribution networks

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    Full text link
    © 2019 Elsevier Ltd Although microgrids facilitate the increased penetration of distributed generations (DGs) and improve the security of power supplies, they have some issues that need to be better understood and addressed before realising the full potential of microgrids. This paper presents a comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids. The discussion in this paper presented with a view to establishing microgrids as distinct from the existing distribution systems. This is accomplished by, firstly, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones. Also, the definitions, classifications and characteristics of microgrids are summarised to provide a sound basis for novice researchers to undertake ongoing research on microgrids

    A bidirectional power charging control strategy for Plug-in Hybrid Electric Vehicles

    Get PDF
    © 2019 by the authors. Plug-in Hybrid Electric Vehicles (PHEVs) have the potential of providing frequency regulation due to the adjustment of power charging. Based on the stochastic nature of the daily mileage and the arrival and departure time of Electric Vehicles (EVs), a precise bidirectional charging control strategy of plug-in hybrid electric vehicles by considering the State of Charge (SoC) of the batteries and simultaneous voltage and frequency regulation is presented in this paper. The proposed strategy can control the batteries charge which are connected to the grid, and simultaneously regulate the voltage and frequency of the power grid during the charging time based on the available power when different events occur over a 24-h period. The simulation results prove the validity of the proposed control strategy in coordinating plug-in hybrid electric vehicles aggregations and its significant contribution to the peak reduction, as well as power quality improvement. The case study in this paper consists of detailed models of Distributed Energy Resources (DERs), diesel generator and wind farm, a generic aggregation of EVs with various charging profiles, and different loads. The test system is simulated and analyzed in MATLAB/SIMULINK software

    DC & Hybrid Micro-Grids

    Get PDF
    This book is a printed version of the papers published in the Special Issue “DC & Hybrid Microgrids” of Applied Sciences. This Special Issue, co-organized by the University of Pisa, Italy and Østfold University College in Norway, has collected nine papers and the editorial, from 28 submitted, with authors from Asia, North America and Europe. The published articles provide an overview of the most recent research advances in direct current (DC) and hybrid microgrids, exploiting the opportunities offered by the use of renewable energy sources, battery energy storage systems, power converters, innovative control and energy management strategies

    Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications

    Get PDF
    The number of battery energy storage systems (BESSs) installed in the United Kingdom and worldwide is growing rapidly due to a variety of factors, including technological improvements, reduced costs and the ability to provide various ancillary services. The aim of this paper is to carry out a comprehensive literature review on this technology, its applications in power systems and to identify potential future developments. At first, the main BESSs projects in the UK are presented and classified. The parameters provided for each project include rated power, battery technology and ancillary services provided, if any. In the next section, the most commonly deployed ancillary services are classified and described. At the same time, the nomenclature found in the literature is explained and harmonised. The second part of the paper focuses on future developments and research gaps: ancillary services that currently are not common but that are likely to be deployed more widely in the future will be described, and more general research topics related to the development of BESSs for power system applications will be outlined
    • 

    corecore