8,292 research outputs found

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen

    An Overview of Forecasting Methods for Monthly Electricity Consumption

    Get PDF
    Mid-term electricity consumption forecasting is analysed in this paper. Forecasting of electricity consumption is regression problem that can be defined as using previous consumption of an individual or a group with the goal of calculation of future consumption using some mathematical or statistical approach. The purpose of this prediction is multi beneficial to the stakeholders in the energy community, since this information can affect production, sales and supply. The Different methods are considered with the main goal to determine the best forecasting model. Considered methods include Box-Jenkins autoregressive integrated moving average models, state-space models and exponential smoothing, and machine learning methods including neural networks. An additional objective of the conducted research was to determine if modern methods like machine learning are equally precise in forecasting mid-term electricity consumption when compared to traditional time series methods. The performances of forecasting models are evaluated on the monthly electricity consumption data obtained using real billing software owned by the Distribution System Operator in Bosnia and Herzegovina. Mean absolute percentage error is selected as a measure of prediction accuracy of forecasting methods. Every forecasting method is implemented and tested using the R language, while data is collected from Data Warehouse in the form of total monthly consumption. The efficiency of presented solution will also be discussed after presentation of the results

    Hybrid Deep Learning Architecture to Forecast Maximum Load Duration Using Time-of-Use Pricing Plans

    Get PDF
    Load forecasting has received crucial research attention to reduce peak load and contribute to the stability of power grid using machine learning or deep learning models. Especially, we need the adequate model to forecast the maximum load duration based on time-of-use, which is the electricity usage fare policy in order to achieve the goals such as peak load reduction in a power grid. However, the existing single machine learning or deep learning forecasting cannot easily avoid overfitting. Moreover, a majority of the ensemble or hybrid models do not achieve optimal results for forecasting the maximum load duration based on time-of-use. To overcome these limitations, we propose a hybrid deep learning architecture to forecast maximum load duration based on time-of-use. Experimental results indicate that this architecture could achieve the highest average of recall and accuracy (83.43%) compared to benchmarkmodels. To verify the effectiveness of the architecture, another experimental result shows that energy storage system (ESS) scheme in accordance with the forecast results of the proposed model (LSTM-MATO) in the architecture could provide peak load cost savings of 17,535,700KRWeach year comparing with original peak load costs without the method. Therefore, the proposed architecture could be utilized for practical applications such as peak load reduction in the grid

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Machine Learning for Load Profile Data Analytics and Short-term Load Forecasting

    Get PDF
    Short-term load forecasting (STLF) is a key issue for the operation and dispatch of day ahead energy market. It is a prerequisite for the economic operation of power systems and the basis of dispatching and making startup-shutdown plans, which plays a key role in the automatic control of power systems. Accurate power load forecasting not only help users choose a more appropriate electricity consumption scheme and reduces a lot of electric cost expenditure but also is conducive to optimizing the resources of power systems. This advantage helps while improving equipment utilization for reducing the production cost and improving the economic benefit, and improving power supply capability. Therefore, ultimately achieving the aim of efficient demand response program. This thesis outlines some machine learning based data driven models for STLF in smart grid. It also presents different policies and current statuses as well as future research direction for developing new STLF models. This thesis outlines three projects for load profile data analytics and machine learning based STLF models. First project is, load profile classification and determining load demand variability with the aim to estimate the load demand of a customer. In this project load profile data collected from smart meter are classified using recently developed extended nearest neighbor (ENN) algorithm. Here we have calculated generalized class wise statistics which will give the idea of load demand variability of a customer. Finally the load demand of a particular customer is estimated based on generalized class wise statistics, maximum load demand and minimum load demand. In the second project, a composite ENN model is proposed for STLF. The ENN model is proposed to improve the performance of k-nearest neighbor (kNN) algorithm based STLF models. In this project we have developed three individual models to process weather data i.e., temperature, social variables, and load demand data. The load demand is predicted separately for different input variables. Finally the load demand is forecasted from the weighted average of three models. The weights are determined based on the change in generalized class wise statistics. This projects provides a significant improvement in the performance of load forecasting accuracy compared to kNN based models. In the third project, an advanced data driven model is developed. Here, we have proposed a novel hybrid load forecasting model based on novel signal decomposition and correlation analysis. The hybrid model consists of improved empirical mode decomposition, T-Copula based correlation analysis. Finally we have employed deep belief network for making load demand forecasting. The results are compared with previous studies and it is evident that there is a significant improvement in mean absolute percentage error (MAPE) and root mean square error (RMSE)

    A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons

    Get PDF
    With the globally increasing electricity demand, its related uncertainties are on the rise as well. Therefore, a deeper insight of load forecasting techniques for projecting future electricity demands becomes imperative for business entities and policy makers. The electricity demand is governed by a set of different variables or “electricity demand determinants”. These demand determinants depend on forecasting horizons (long term, medium term, and short term), the load aggregation level, climate, and socio-economic activities. In this paper, a review of different electricity demand forecasting methodologies is provided in the context of a group of low and middle income countries. The article presents a comprehensive literature review by tabulating the different demand determinants used in different countries and forecasting the trends and techniques used in these countries. A comparative review of these forecasting methodologies over different time horizons reveals that the time series modeling approach has been extensively used while forecasting for long and medium terms. For short term forecasts, artificial intelligence-based techniques remain prevalent in the literature. Furthermore, a comparative analysis of the demand determinants in these countries indicates a frequent use of determinants like the population, GDP, weather, and load data over different time horizons. Following the analysis, potential research gaps are identified, and recommendations are provided, accordingly
    • 

    corecore