1,243 research outputs found

    Modeling of the Partial Discharge Process in a Liquid Dielectric: Effect of Applied Voltage, Gap Distance, and Electrode Type

    No full text
    The partial discharge (PD) process in liquid dielectrics is influenced by several factors. Although the PD current contains the information representing the discharge process during the PD event, it is difficult to determine the detailed dynamics of what is happening in the bulk of the liquid. In this paper, a microscopic model describing the dynamics of the charge carriers is implemented. The model consists of drift-diffusion equations of electrons, positive and negative ions coupled with Poisson’s equation. The stochastic feature of PD events is included in the equation. First the model is validated through comparison between the calculated PD current and experimental data. Then experiments are conducted to study the effects of the amplitude of the applied voltage, gap distance and electrode type on the PD process. The PD currents under each condition are recorded. Simulations based on the model have been conducted to analyze the dynamics of the PD events under each condition, and thus explain the mechanism of how these factors influence the PD events. The space charge generated in the PD process is revealed as the main reason affecting the microscopic process of the PD events

    Characterization of Power Transformer Frequency Response Signature using Finite Element Analysis

    Get PDF
    Power transformers are a vital link in electrical transmission and distribution networks. Monitoring and diagnostic techniques are essential to decrease maintenance and improve the reliability of the equipment.This research has developed a novel, versatile, reliable and robust technique for modelling high frequency power transformers. The purpose of this modelling is to enable engineers to conduct sensitivity analyses of FRA in the course of evaluating mechanical defects of power transformer windings. The importance of this new development is that it can be applied successfully to industry transformers of real geometries

    The effect of DC voltage pre-stress on breakdown voltage of air under composite DC & LI voltage and test circuit: design and application

    Get PDF
    The use of HVDC systems is increasing in number due to technological innovations, increasing power capacity and increasing customer demand. The characteristics of insulation systems under composite DC and LI voltage must be examined and clarified. In this study, firstly, experimental circuits were designed to generate and measure composite DC and LI high voltage using a simulation program. The coupling elements used were chosen according to simulation results. Afterward, experimental circuits were established in the laboratory according to the simulation results of the designed experimental circuit. Then, breakdown voltages under composite DC and LI voltage for less uniform and non-uniform electric fields were measured with four different electrode systems for positive and negative DC voltage pre-stresses with different amplitudes. The 50% breakdown voltage was calculated using the least-squares method. Finally, 3D models were created for the electrode systems used in the experiments using the finite element method. The efficiency factors of electrode systems calculated with the FEM results were correlated with the experimental breakdown voltage results. Thus, the breakdown behavior of air under bipolar and unipolar composite voltages (CV) was investigated. In conclusion, the experimental results showed that very fast polarity change in bipolar CV causes higher electrical stress compared to unipolar CV

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    • …
    corecore