528 research outputs found

    Elderly care: activities of daily living classification with an S band radar

    Get PDF
    Falls in the elderly represent a serious challenge for the global population. To address it, monitoring of daily living has been suggested, with radar emerging to be a useful platform for it due to its various benefits with acceptance and privacy. Here, we show results from the use of an S band radar for activity detection and the importance of selecting specific frequency bins to improve its suitability for human movement classification. The use of feature selection to improve detection of key activities such as falls has been presented. Initial results of 65% are improved to 85% and further to 90% with the aforementioned methods

    Applying safe flooring in housing environments related to the independent elderly : evaluating suitability flooring technology to absorb impact in the event of a fall

    Get PDF
    Aplicat embargament des de la data de defensa fins el dia 3/6/2022This research has been developed with the intention of investigating a different generation of pavements. Most of the current pavements have the same basic standard characteristics and this ensures that living conditions are comfortable, safe, and pleasant for the majority of citizens. But a small group of pavements is designed with a specific purpose: to reduce injuries related to people's falls to the ground; They are called CF (compliant flooring in English). A detailed study of CF flooring systems is warranted to assess their usability for vulnerable groups such as the elderly. This study is structured in six chapters. The first chapter has dealt mainly with bibliographic studies and statistical data consulted on official and international websites. This section evaluates the importance of the increase in the elderly population, life expectancy, and threats to the safety and health of the elderly, especially, and their secondary effects. The scope of the research has been carried out internationally, in Europe and within Spain, and finally, specifically for Catalonia. The second chapter presents a brief overview of the interior flooring, specifically considering its comfort and safety during use. The importance and direct relationship between the sole of the foot and the gait mechanism with respect to the type of pavement have been verified. Many factors that influence this have been investigated, such as the physics and biomechanics of the body when walking, the kinematics of falls, and the dynamics of impact. In addition, a general description of the behavior of materials for use in pavements has been made to better understand the behavior of CF systems. In addition, the most suitable strategies to cope with falls and reduce injuries are discussed. Examining other products with appreciable energy-absorbing and shock-reducing capabilities has been helpful in the proposed pre-designs, all of which have been made based on numerical analysis and related standards. The third chapter is already dedicated to the study of technology and research on the most suitable CF systems; studies from academic, commercial, and architecture departments, in general, are included. In this section, some standard tests related to the various selected materials are developed and several examples of similar products are studied. The fourth chapter includes field research (on-site) and analysis of case studies. Several notable flooring companies around the world were contacted by mail, specifically examining those products whose manufacturers claimed to be shock absorbers. This part of the investigation was slowed down by the delay in shipments. Once they arrived, a real environment was sought where they could obtain the opinion of the elderly and the personnel assigned to their care. All the practice tests were carried out in a residence for the elderly in Barcelona for about two months, focusing on the study of the current pavements of the center and the current derived problems related to users.This entire process was completed by interviewing users and caregivers with predefined questionnaires. It should be noted that this allowed us to contrast the quantitative characteristics of the study in combination with the elements of qualitative research. Chapter Five deals with the results, discussions, suggestions for installation and improvement of pavement safety in risk areas. Simulations were also carried out on a possible base structure of the pavements with the finite element method (FEM). Chapter six presents guidelines for future developments. The author further investigated the materials and their structure and is presented them as a basis for future technical developments.The author considers that, with more detailed studies, it would be possible to use as CF system other materials, either natural or recycled based on agricultural products, which would increase the diversity of the CF system offer and promote more sustainable architectureEsta investigación se ha desarrollado con la intención de investigar una generación diferente de pavimentos. La mayoría de los actuales pavimentos tienen las mismas características básicas estándar y ello garantiza que las condiciones de vida sean cómodas, seguras y agradables para la mayoría de los ciudadanos. Pero un grupo reducido de pavimentos está diseñado con un propósito específico: reducir las lesiones relacionadas con las caídas al suelo de las personas; son los denominados CF (compliant flooring en inglés). Un estudio detallado de los sistemas de pavimentos CF está justificado para evaluar su posibilidad de uso para grupos vulnerables como los ancianos. Este estudio se estructura en seis capítulos. En el primer capítulo se han abordado principalmente los estudios bibliográficos y datos estadísticos consultados en sitios web oficiales e internacionales. En esta sección se evalúa la importancia del aumento de la población anciana. El ámbito de la investigación se ha realizado a nivel internacional, en Europa y dentro de España, y finalmente, específicamente para Cataluña. El segundo capítulo se presenta una breve panorámica del pavimento interior. Se ha constatado la importancia y relación directa entre la planta del pie y el mecanismo de andar con respecto al tipo de pavimento. Se han investigado muchos factores que influyen en ello. Además, se ha realizado una descripción general del comportamiento de los materiales al uso en pavimentos para comprender mejor el comportamiento de los sistemas de CF. Además, se discuten las estrategias más idóneas para hacer frente a las caídas y reducir las lesiones. Examinar otros productos con apreciables capacidades de amortiguación de energía y reducción de impactos ha sido de gran ayuda en los prediseños propuestos, todos los cuales se han realizado sobre la base de análisis numérico y los estándares relacionados. El tercer capítulo está dedicado ya al estudio de la tecnología y la investigación sobre los sistemas de C más idóneos; se incluyen estudios procedentes de departamentos académicos, comerciales y de arquitectura en general. En esta sección se desarrollan algunas pruebas estándar relacionadas con los diversos materiales seleccionados y se estudian varios ejemplos de productos similares. El cuarto capítulo incluye investigación de campo (in situ) y análisis de estudios de casos. Se contactó por correo con varias empresas notables de pavimentos en todo el mundo, y se examinaron específicamente aquellos productos cuyos fabricantes afirmaban ser amortiguadores. Esta parte de la investigación se vio ralentizada por la demora en los envíos. Una vez llegados se buscó un ámbito real donde poder recabar la opinión de las personas mayores y del personal adscrito a su cuidado. Todas las pruebas prácticas se realizaron en una residencia de ancianos de Barcelona durante unos dos meses, centrándose en el estudio de los actuales pavimentos del centro y los problemas actuales derivados relacionados con los usuarios. Todo este proceso se completó mediante entrevistas a usuarios y cuidadores con cuestionarios predefinidos. El Capítulo Cinco se refiere a los resultados, discusiones, sugerencias para la instalación y mejora de la seguridad del pavimento en áreas de riesgo. También se realizaron simulaciones sobre una posible estructura base de los pavimentos con el método elemento finito (FEM). El capítulo seis presenta directrices para desarrollos futuros. El autor investigó más a fondo sobre los materiales y su estructura, y se presenta como una base para desarrollos técnicos futuros. El autor considera que, con estudios más detallados, sería posible utilizar como CF otros materiales, bien naturales o reciclados a base de productos agrícolas, lo cual aumentaría la diversidad de la oferta de CF y fomentaría la arquitectura más sostenible.Postprint (published version

    Spatio-temporal gait analysis based on human-smart rollator interaction

    Get PDF
    The ability to walk is typically related to several biomechanical components that are involved in the gait cycle (or stride), including free mobility of joints, particularly in the legs; coordination of muscle activity in terms of timing and intensity; and normal sensory input, such as vision and vestibular system. As people age, they tend to slow their gait speed, and their balance is also affected. Also, the retirement from the working life and the consequent reduction of physical and social activity contribute to the increased incidence of falls in older adults. Moreover, older adults suffer different kinds of cognitive decline, such as dementia or attention problems, which also accentuate gait disorders and its consequences. In this paper we present a methodology for gait identification using the on-board sensors of a smart rollator: the i-Walker. This technique provides the number of steps performed in walking exercises, as well as the time and distance travelled for each stride. It also allows to extract spatio-temporal metrics used in medical gait analysis from the interpretation of the interaction between the individual and the i-Walker. In addition, two metrics to assess users’ driving skills, laterality and directivity, are proposed.Peer ReviewedPostprint (author's final draft

    BIOMECHANICAL MARKERS AS INDICATORS OF POSTURAL INSTABILITY PROGRESSION IN PARKINSON'S DISEASE

    Get PDF
    The long term objective of this research is to identify quantitative biomechanical parameters of postural instability in patients with Parkinson’s disease (PD) that can in turn be used to assess fall risk. Currently, clinical assessments in PD are not sufficiently sensitive to predict fall risk, making a history of falls to be the best predictor of a future fall. Identifying biomechanical measures to predict risk of falls in PD would provide a quantitative justification to implement fall-reducing therapies prior to a first fall and help prevent the associated debilitating fractures or even morbidity. While past biomechanical studies have shown the presence of balance deficits in PD patients, which often include a broad spectrum of disease stages, compared to healthy controls (HC), no studies have assessed whether such parameters can distinguish the onset of postural instability prior to clinical presentation, and if such parameters persist following clinical presentation of postural instability. Toward this end this study had three goals: • Determine if biomechanical assessment of a quasi-static task, postural sway, could provide preclinical indication of postural instability in PD. • Define a mathematical model (based on principal component analysis, PCA) with biomechanical and clinical measures as inputs to quantitatively score earlier postural instability presence and progression in PD. • Investigate if biomechanical assessment of a dynamic task, gait initiation, could provide preclinical indication of postural instability in PD. Specific Aim 1 determined that some biomechanical postural sway variables showed evidence of preclinical postural instability and increased with PD progression. This aim distinguished mild PD (Hoehn and Yahr stage (H&Y) 2, without postural deficits) compared to HC suggesting preclinical indication of postural instability, and confirmed these parameters persisted in moderate PD (H&Y 3, with postural deficits). Specifically, trajectory, variation, and peak measures of the center of pressure (COP) during postural sway showed significant differences (p < .05) in mild PD compared to healthy controls, and these differences persisted in moderate PD. Schwab and England clinical score best correlated with the COP biomechanical measures. These results suggest that postural sway COP measures may provide preclinical indication of balance deficits in PD and increase with clinical PD progression. Specific Aim 2 defined a PCA model based on biomechanical measures of postural sway and clinical measures in mild PD, moderate PD, and HC. PCA modeling based on a correlation matrix structure identified both biomechanical and clinical measures as the primary drivers of variation in the data set. Further, a PCA model based on these selected parameters was able to significantly differentiate (p < .05) all 3 groups, suggesting PCA scores may help with preclinical indication of postural instability (mild PD versus HC) and could be sensitive to clinical disease progression (mild PD versus moderate PD and moderate PD versus HC). AP sway path length and a velocity parameter were the 2 primary measures that explained the variability in the data set, suggesting further investigation of these parameters and mathematical models for scoring postural instability progression is warranted. Specific Aim 3 determined that a velocity measure from biomechanical assessment of gait initiation (peak COP velocity towards the swing foot during locomotion) showed evidence of preclinical postural instability in PD. Because balance is a complex task, having a better understanding of both quasi-static (postural sway) and dynamic (gait initiation) tasks can provide further insight about balance deficits resulting from PD. Several temporal and kinematic parameters changed with increasing disease progression, with significant difference in moderate PD versus HC, but missed significance in mild PD compared to HC. Total Unified Parkinson’s Disease Rating Scale (UPDRS) and Pull Test clinical scores best correlated with the biomechanical measures of the gait initiation response. These results suggest dynamic biomechanical assessment may provide additional information in quantifying preclinical postural instability and progression in PD. In summary, reducing fall risk in PD is a high priority effort to maintain quality of life by allowing continued independence and safe mobility. Since no effective screening method exists to measure fall risk, our team is developing a multi-factorial method to detect postural instability through clinical balance assessment, and in doing so, provide the justification for implementing fall reducing therapies before potentially debilitating falls begin

    Doppler Radar for the Extraction of Biomechanical Parameters in Gait Analysis

    Full text link
    The applicability of Doppler radar for gait analysis is investigated by quantitatively comparing the measured biomechanical parameters to those obtained using motion capturing and ground reaction forces. Nineteen individuals walked on a treadmill at two different speeds, where a radar system was positioned in front of or behind the subject. The right knee angle was confined by an adjustable orthosis in five different degrees. Eleven gait parameters are extracted from radar micro-Doppler signatures. Here, new methods for obtaining the velocities of individual lower limb joints are proposed. Further, a new method to extract individual leg flight times from radar data is introduced. Based on radar data, five spatiotemporal parameters related to rhythm and pace could reliably be extracted. Further, for most of the considered conditions, three kinematic parameters could accurately be measured. The radar-based stance and flight time measurements rely on the correct detection of the time instant of maximal knee velocity during the gait cycle. This time instant is reliably detected when the radar has a back view, but is underestimated when the radar is positioned in front of the subject. The results validate the applicability of Doppler radar to accurately measure a variety of medically relevant gait parameters. Radar has the potential to unobtrusively diagnose changes in gait, e.g., to design training in prevention and rehabilitation. As contact-less and privacy-preserving sensor, radar presents a viable technology to supplement existing gait analysis tools for long-term in-home examinations.Comment: 13 pages, 9 figures, 2 tables, accepted for publication in the IEEE Journal of Biomedical and Health Informatics (J-BHI

    Deep representation learning for marker-less human posture analysis

    Full text link
    This thesis presents a holistic human posture analysis system. The proposed system leverages the state-of-the-art deep learning techniques to feature a comprehensive pipeline. Moreover, a new nonlinear computational layer is proposed to the deep convolutional neural network architectures to incorporate human perception capabilities into the deep learning architectures
    • …
    corecore