569 research outputs found

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    Resource provisioning in Science Clouds: Requirements and challenges

    Full text link
    Cloud computing has permeated into the information technology industry in the last few years, and it is emerging nowadays in scientific environments. Science user communities are demanding a broad range of computing power to satisfy the needs of high-performance applications, such as local clusters, high-performance computing systems, and computing grids. Different workloads are needed from different computational models, and the cloud is already considered as a promising paradigm. The scheduling and allocation of resources is always a challenging matter in any form of computation and clouds are not an exception. Science applications have unique features that differentiate their workloads, hence, their requirements have to be taken into consideration to be fulfilled when building a Science Cloud. This paper will discuss what are the main scheduling and resource allocation challenges for any Infrastructure as a Service provider supporting scientific applications

    Two-Phase Virtual Machine Placement Algorithms for Cloud Computing: An Experimental Evaluation under Uncertainty

    Get PDF
    Cloud computing providers must support requests for resources in dynamic environments, considering service elasticity and overbooking of physical resources. Due to the randomness of requests, Virtual Machine Placement (VMP) problems should be formulated under uncertainty. In this context, a renewed formulation of the VMP problem is presented, considering the optimization of four objective functions: (i) power consumption, (ii) economical revenue, (iii) resource utilization and (iv) reconfiguration time. To solve the presented formulation, a two-phase optimization scheme is considered, composed by an online incremental VMP phase (iVMP) and an offline VMP reconfiguration (VMPr) phase. An experimental evaluation of five algorithms taking into account 400 different scenarios was performed, considering three VMPr Triggering and two VMPr Recovering methods as well as three VMPr resolution alternatives. Experimental results indicate which algorithm outperformed the other evaluated algorithms, improving the quality of solutions in a scenario-based uncertainty model considering the following evaluation criteria: (i) average, (ii) maximum and (iii) minimum objective function costs.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Elastic Highly Available Cloud Computing

    Get PDF
    High availability and elasticity are two the cloud computing services technical features. Elasticity is a key feature of cloud computing where provisioning of resources is closely tied to the runtime demand. High availability assure that cloud applications are resilient to failures. Existing cloud solutions focus on providing both features at the level of the virtual resource through virtual machines by managing their restart, addition, and removal as needed. These existing solutions map applications to a specific design, which is not suitable for many applications especially virtualized telecommunication applications that are required to meet carrier grade standards. Carrier grade applications typically rely on the underlying platform to manage their availability by monitoring heartbeats, executing recoveries, and attempting repairs to bring the system back to normal. Migrating such applications to the cloud can be particularly challenging, especially if the elasticity policies target the application only, without considering the underlying platform contributing to its high availability (HA). In this thesis, a Network Function Virtualization (NFV) framework is introduced; the challenges and requirements of its use in mobile networks are discussed. In particular, an architecture for NFV framework entities in the virtual environment is proposed. In order to reduce signaling traffic congestion and achieve better performance, a criterion to bundle multiple functions of virtualized evolved packet-core in a single physical device or a group of adjacent devices is proposed. The analysis shows that the proposed grouping can reduce the network control traffic by 70 percent. Moreover, a comprehensive framework for the elasticity of highly available applications that considers the elastic deployment of the platform and the HA placement of the application’s components is proposed. The approach is applied to an internet protocol multimedia subsystem (IMS) application and demonstrate how, within a matter of seconds, the IMS application can be scaled up while maintaining its HA status

    Two-Phase Virtual Machine Placement Algorithms for Cloud Computing: An Experimental Evaluation under Uncertainty

    Get PDF
    Cloud computing providers must support requests for resources in dynamic environments, considering service elasticity and overbooking of physical resources. Due to the randomness of requests, Virtual Machine Placement (VMP) problems should be formulated under uncertainty. In this context, a renewed formulation of the VMP problem is presented, considering the optimization of four objective functions: (i) power consumption, (ii) economical revenue, (iii) resource utilization and (iv) reconfiguration time. To solve the presented formulation, a two-phase optimization scheme is considered, composed by an online incremental VMP phase (iVMP) and an offline VMP reconfiguration (VMPr) phase. An experimental evaluation of five algorithms taking into account 400 different scenarios was performed, considering three VMPr Triggering and two VMPr Recovering methods as well as three VMPr resolution alternatives. Experimental results indicate which algorithm outperformed the other evaluated algorithms, improving the quality of solutions in a scenario-based uncertainty model considering the following evaluation criteria: (i) average, (ii) maximum and (iii) minimum objective function costs.Sociedad Argentina de Informática e Investigación Operativa (SADIO
    • …
    corecore