144 research outputs found

    Polymer Materials and Its Properties

    Get PDF

    The relationship between elasticity and structure of macromolecular networks - Outline of a new approach

    Get PDF
    Statistical mechanics, chemical analysis, and elasticity studies for macromolecular networks like rubbe

    Production and characterization of thermoplastic elastomers based on recycled rubber

    Get PDF
    Ce travail de doctorat est consacré à la production et à la caractérisation de composés polymères à base de matrices thermoplastiques en mélange avec des particules de caoutchoucs recyclés. Les principales applications visées sont: (A) la production d’élastomères thermoplastiques (TPE) à haute teneur (50% et plus) en poudrette de caoutchouc de pneus usés (GTR); et (B) l’amélioration de la résistance à l’impact des composites thermoplastiques avec de faibles concentrations en GTR. Dans la première partie de ce travail, du polyéthylène maléaté (MAPE) a été utilisé comme matrice pour produire des mélanges MAPE/GTR présentant d'excellentes caractéristiques en tant qu’élastomère thermoplastique. Puis, les effets de différents mécanismes de dégradation (humidité, chaleur et recyclage) sur les propriétés des composites MAPE/GTR ont été largement examinés afin d’évaluer le potentiel de ces matériaux après plusieurs cycles d’utilisation. Enfin, le renforcement des TPE/GTR par différentes particules solides (poudre de bois et talc) a été étudié pour des applications plus exigeantes (caractéristiques mécaniques). Dans la seconde partie de ce travail, une nouvelle approche est proposée pour la modification de la résistance aux chocs des composites à base de polypropylène renforcé par des charges organique (chanvre) et inorganiques (talc, verre). L’amélioration des propriétés à l'impact de ces composites a été réalisée par l’addition d’un mélange à base de polypropylène maléaté (MAPP) et de poudrette de caoutchouc (GTR et déchets d’EPDM) contenant des concentrations élevées (jusqu’à 70% en poids) de déchets caoutchoutiques.This Ph.D. work is devoted to the production and characterization of polymer compounds based on thermoplastic matrix filled with waste rubber powder. The main applications include: (A) the production of thermoplastic elastomer (TPE) resins containing high ground tire rubber (GTR) contents (50% and higher), and (B) impact modification of thermoplastic composites using low concentrations of GTR. In the first part of the work, maleated polyethylene (MAPE) is proposed as a matrix to produce MAPE/GTR blends having excellent characteristics as thermoplastic elastomers. Then, the effects of different degradation mechanisms (weathering, thermal degradation and reprocessing) on the properties of MAPE/GTR compounds were extensively investigated to determine their potential for further recycling. Finally, the reinforcement of GTR filled TPE was investigated using different types of solid particles (wood flour and talc) for more demanding applications (mechanical characteristics). In the second part of the work, a new approach is proposed for impact modification of polypropylene based composites based on organic (hemp) and inorganic (talc and glass) reinforcements. The effective improvement of the impact properties of these composites is performed through the addition of a masterbatch based on maleated polypropylene (MAPP)/waste rubber powder (GTR or waste EPDM) containing high concentrations (70% by weight) of waste rubber

    A new modelling of the Mullins'effect and viscoelasticity of elastomers based on physical approach

    Get PDF
    The mechanical behaviour of elastomers is known to be highly non-linear, time-dependent and to exhibit hysteresis and stress-softening known as the Mullins effect (Mullins, 1948) upon cyclic loading. These phenomena are classically studied and modelled independently. Some studies are based on physical approaches (Arruda and Boyce, 1993; Bergström and Boyce, 1998; Marckmann et al., 2002) in which macroscopic constitutive equations are build in regards with the physics of polymeric chains. In this context of physical considerations, the aim of the present paper is to study independently each phenomenon involved in rubber-like materials and to assemble them in a global constitutive equation. First, the hyperelastic behaviour of elastomers is modelled by the physical approach of Arruda and Boyce (1993), widely known as the eight-chains model. This model accurately reproduces the large strains elastic behaviour of elastomers under different types of deformation. Second, the hysteretic time dependent behaviour is approached by the model developed by Bergström and Boyce (1998) that considers the separation of the network in two phases: an elastic equilibrium network and a viscoelastic network that captures the nonlinear rate-dependent deviation from equilibrium. This model is quite simple and successfully reproduces the rate-dependent hysteretic properties of elastomers. Last, as shown in the bibliography, the Mullins stress-softening effect can be considered as a damage phenomenon which only depends on the maximum stretch attained during the deformation history (Govindgee and Simo, 1992). In the present approach, the physical theory of Marckmann et al. (2002) based on an alteration of the polymeric network is adopted. This theory was introduced in the eight-chains hyperelastic model and successfully simulates the decrease of the material stiffness between the first and the second loading curves under cyclic loading. As these three models are based on the physics of the polymeric network, they are gathered in a new efficient constitutive equation. This model is able to reproduces imultaneously the Mullins effect and the time-dependent hysteretic behaviour of elastomers. Finally, the constitutive parameters of this new model are identified by fitting experimental data

    Thermoplastic elastomers based on recycled plastics and waste tires

    Get PDF
    This work developed an innovative approach of tire recycling through the application of waste tire rubber and textile fiber as reinforcements for the production of fully recycled thermoplastic elastomer (TPE), compounds turning wastes into added-value materials. An experimental optimization was performed to develop a specific phase morphology and achieve balanced physical, mechanical, and thermal properties of TPE based on recycled materials. In the first part, ground rubber tire (GTR) from regenerated rubber (RR) and non-regenerated rubber (NRR) based on off-the-road (OTR) tires were melt blended (twin-screw extrusion) with recycled high-density polyethylene (rHDPE) to investigate the effect of rubber regeneration and composition on the processability, phase morphology and properties of highly filled TPE containing up to 90 wt.% GTR. Inclusion of RR into rHDPE contributed to better flowability and processability because of higher chain mobility and particle deformability compared to NR particles. Despite decreasing tensile strength and tensile modulus with rubber content (stress concentration points), the elongation at break and impact strength increased which was attributed to the presence of a more elastic phase content and higher energy absorption through the deformation of rubbery particles retarding fracture. In the second part, TPE blends based on recycled thermoplastic were prepared via melt blending to study the effect of GRT particle size (0–250 μm, 250–500 μm and 500–850 μm) and content (0, 20, 35, 50 and 65 wt.%). The results revealed that for a fixed blend composition, smaller GTR particles (0–250 μm) gave higher tensile properties and toughness compared to larger particles because of higher specific surface area (higher value and better contact) between small GTR particles and the matrix promoting interfacial interaction. However, smaller particles had a negligible effect on mechanical strength at higher GTR content (above 50 wt.%) since incompatibility and poor interphase quality played a more significant role. In the next step, different types of regenerated recycled rubbers (RR₁ and RR₂) were used to produce highly filled TPE blends (over 70 wt.%). Strong entanglement between RR₂ (regeneration degree of 24%) free chains and the thermoplastic macromolecules contributed to strong interfacial interaction, leading to high mechanical properties. The introduction of a recycled ethylene-vinyl acetate (rEVA) copolymer improved the elongation at break and impact strength by 27% and 11% respectively, via encapsulation of the rubber phase by the elastomer copolymer (10 wt.%) forming a thick/soft interphase decreasing interfacial stress concentration slowing down fracture. In the last part, a masterbatch based on maleic anhydride grafted polyethylene (MAPE)/RR (70/30) was used for impact modification and compatibilization of recycled TPE composites reinforced with recycled tire fiber (RTF). The addition of surface coated RR with the coupling agent delayed crack initiation/propagation by forming a thick/soft interphase decreasing interfacial stress concentration slowing down fracture. Encapsulation of the rubber phase by MAPE provided an efficient method for waste tire recycling (rubber and fibers) by producing toughened TPE composites with acceptable mechanical properties. Overall, the results obtained in this project open the door for further development of waste tires recycling via the production of environmentally friendly, cost effective and added-value TPE compounds for several industrial applications like automotive, packaging and civil engineering.Ce travail développe une approche innovante du recyclage des pneus grâce à l'application de déchets de caoutchouc de pneus et de fibres textiles comme renforts pour la production de composés élastomères thermoplastiques (TPE) entièrement recyclés transformant les déchets en matériaux à valeur ajoutée. Une optimisation expérimentale a été réalisée pour développer une morphologie de phase spécifique et obtenir des propriétés physiques, mécaniques et thermiques équilibrées du TPE à base de matériaux recyclés. Dans la première partie, de la poudrette de pneu usé (GTR) à partir de caoutchouc régénéré (RR) et de caoutchouc non régénéré (NRR) à base de pneus hors-route (OTR) ont été mélangés à l'état fondu (extrusion à double vis) avec des matériaux recyclés comme le polyéthylène haute densité recyclé (rHDPE) pour étudier l'effet de la régénération et de la composition du caoutchouc sur l'aptitude au moulage, la morphologie des phases et les propriétés du TPE hautement chargé contenant jusqu'à 90% en poids de GTR. L'inclusion de RR dans le rHDPE a contribué à une meilleure fluidité et une aptitude au moulage en raison de la mobilité des chaînes et de la déformabilité des particules plus élevées que les particules NR. Malgré la diminution de la résistance à la traction et du module de traction avec la teneur en caoutchouc (points de concentration de contrainte), l'allongement à la rupture et la résistance aux chocs ont augmenté, ce qui a été attribué à la présence d'une teneur en phase plus élastique et d'une absorption d'énergie plus élevée par la déformation des particules caoutchouteuses retardant la rupture. Dans la deuxième partie, des mélanges de TPE à base de thermoplastique recyclé ont été préparés par mélange à l'état fondu pour étudier l'effet de la taille des particules de GTR (0-250 μm, 250-500 μm et 500-850 μm) et leur contenu (0, 20, 35, 50 et 65% en poids). Les résultats ont révélé que pour une composition de mélange fixe, les particules de GTR plus petites (0-250 μm) ont donné des propriétés de traction et une ténacité plus élevées par rapport aux particules plus grosses en raison d'une surface spécifique plus élevée (valeur plus élevée et meilleur contact) entre les petites particules de GTR et la matrice favorisant l’interaction interfaciale. Cependant, les particules plus petites ont un effet négligeable sur la résistance mécanique à une teneur en GTR plus élevée (au-dessus de 50% en poids) puisque l'incompatibilité et la mauvaise qualité de l'interphase ont joué un rôle plus important. Dans l'étape suivante, différents types de caoutchoucs recyclés régénérés (RR₁ et RR₂) ont été utilisés pour produire des mélanges de TPE hautement chargés (plus de 70% en poids). Un fort enchevêtrement entre les chaînes libres RR₂ (degré de régénération de 24%) et les macromolécules thermoplastiques a contribué à une forte interaction interfaciale conduisant à des propriétés mécaniques élevées. L'introduction d'un copolymère éthylène-acétate de vinyle recyclé (rEVA) a montré une augmentation de l'allongement à la rupture et de la résistance aux chocs de 27% et 11% respectivement, via l'encapsulation de la phase de caoutchouc par le copolymère élastomère (10% en poids) formant un interphase épaisse/flexible diminuant la concentration de contraintes interfaciales ralentissant la fracture. Dans la dernière partie, un mélange maître à base de polyéthylène greffé à l'anhydride maléique (MAPE)/RR (70/30) a été utilisé pour la modification d'impact et la compatibilisation de composites TPE recyclés renforcés de fibres de pneu recyclées (RTF). L'ajout de RR recouvert en surface avec l'agent de couplage a retardé l'initiation et la propagation des fissures en formant une interphase épaisse/flexible diminuant la concentration de contraintes interfaciales ralentissant la fracture. L'encapsulation de la phase caoutchouc par MAPE a fourni une méthode efficace pour le recyclage des pneus usés (caoutchouc et fibres) en produisant des composites TPE renforcés avec des propriétés mécaniques acceptables. Dans l'ensemble, les résultats obtenus dans ce projet ouvrent la porte à un développement ultérieur du recyclage des pneus usagés via la production de composés TPE respectueux de l'environnement, rentables et à valeur ajoutée pour plusieurs applications industrielles telles que l'automobile, l'emballage et le génie civil

    High-performance natural rubber composites based on lignocellulosic fillers

    Get PDF
    Ce travail est consacré au développement de biocomposites de caoutchouc naturel (NR) performants pour produire des composites ayant des propriétés similaires aux formulations conventionnelles à base de noir de carbone (CB). Le projet est divisé en deux parties principales selon les types de charges: les charges lignocellulosiques de taille macro et la nanocellulose. Dans un premier temps, le remplacement du CB par de la lignine et de la cellulose (avec et sans modification) est étudié. Les résultats montrent que la lignine et la cellulose ont leurs propres avantages et limites, mais le remplacement partiel du CB par les deux macro-biocharges peut fournir de meilleures propriétés mécaniques et dynamiques par rapport au CB seul. Néanmoins, des propriétés améliorées sont également obtenues après une modification de surface de la cellulose par de l'anhydride maléique greffé sur du polyisoprène (MAPI). Cependant, il n'est pas possible de remplacer complètement le CB par ces charges en raison des fortes interactions entre les charges. Ensuite, l'effet de la nanocellulose sur le renforcement du NR est étudié. Ce travail comprend également un système de renforcement hybride à base de nanocellulose et de nanotubes de carbone (CNT) qui montre la formation d'un réseau conducteur 3D solide à l'intérieur de la matrice de caoutchouc. La présence de ce réseau conduit à d'excellentes propriétés (propriétés mécaniques dynamiques et conductivité thermique) qui peuvent être facilement contrôlées en ajustant la teneur en charges. Enfin, un nouveau système hybride contenant de la lignine et de la nanocellulose a été développé pour renforcer le NR. Dans ce cas, une concentration élevée (40 parties pour cent de caoutchouc, phr) de lignine est utilisée comme biocharge non-renforçante pour réduire les coûts et augmenter la durabilité, tandis que la nanocellulose est ajoutée pour renforcer ces biocomposites NR. On constate que l'ajout de 7,5 phr de nanocellulose aux composés lignine/NR (contenant 40 phr de lignine) augmente la teneur en caoutchouc lié (37%), la résistance à la traction (36%) et le module à 100 % de déformation (101%), tout en diminuant le temps de durcissement (14%) et le facteur de perte (55% à 10% de déformation). Malgré sa biodégradabilité et sa durabilité, le bionanocomposite nanocellulose/lignine/NR présente des propriétés mécaniques similaires et même de meilleures propriétés mécaniques dynamiques (53% à 10% de déformation) que les composites NR conventionnels renforcés avec du CB seul.This work is devoted to the development of high-performance natural rubber (NR) biocomposites to produce composites having similar properties as conventional formulations based on carbon black (CB). The project is divided into two main parts depending on the types of fillers: macro-sized lignocellulosic fillers and nanocellulose. Firstly, the effect of replacing CB by lignin and cellulose (with and without modification) is studied. The results show that both lignin and cellulose have their own advantages and limitations, but partial replacement of CB with both macro-biofillers can provide better mechanical and dynamic mechanical properties compared to CB alone. Nevertheless, improved properties are also obtained after surface modification of the cellulose with maleic anhydride grafted to polyisoprene (MAPI). However, it is not possible to completely replace CB with these fillers due to strong filler-filler interactions. Then, the effect of nanocellulose on NR reinforcement is studied. This work also includes a hybrid reinforcing system based on nanocellulose and carbon nanotube (CNT) which is showing the formation of a strong 3D conductive network inside the rubber matrix. The presence of this network leads to excellent properties (mechanical and dynamic properties, and thermal conductivity), which can be easily controlled by tuning the fillers content ratio. Finally, a novel hybrid system containing lignin and nanocellulose is developed to reinforce NR. In this case, a high concentration (40 parts per hundred rubber, phr) of lignin is used as a non-reinforcing biofiller to reduce the costs and increase the sustainability, while nanocellulose is added to reinforce these NR biocomposites. It was found that adding 7.5 phr of nanocellulose to the lignin/NR compounds (containing 40 phr lignin) increased the bound rubber content (37%), tensile strength (36%) and modulus at 100% strain (101%), while decreasing the curing time (14%) and loss factor (55% at 10% strain). Despite its biodegradability and sustainability, the nanocellulose/lignin/NR bionanocomposite exhibits similar mechanical properties and even better dynamic mechanical properties (53% at 10% strain) than conventional NR composites reinforced with CB alone

    Influence of strain-induced crystallization on the crack driving force in fracture behavior of rubber

    No full text
    International audienceFatigue crack growth resistance increases with the loading ratio due to strain-induced crystallization, even if the peak stress increases. Recent experiments have allowed determination of the strain-induced crystallization (SIC) distribution around a crack tip during uninterrupted fatigue tests. The purpose of this work is to compare spatial distributions of crystallinity in a cracked sample at different elongations between one experiment and simulation results based on our model

    Geometry of logarithmic strain measures in solid mechanics

    Full text link
    We consider the two logarithmic strain measuresωiso=devnlogU=devnlogFTF and ωvol=tr(logU)=tr(logFTF),\omega_{\rm iso}=\|\mathrm{dev}_n\log U\|=\|\mathrm{dev}_n\log \sqrt{F^TF}\|\quad\text{ and }\quad \omega_{\rm vol}=|\mathrm{tr}(\log U)|=|\mathrm{tr}(\log\sqrt{F^TF})|\,,which are isotropic invariants of the Hencky strain tensor logU\log U, and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group GL(n)\mathrm{GL}(n). Here, FF is the deformation gradient, U=FTFU=\sqrt{F^TF} is the right Biot-stretch tensor, log\log denotes the principal matrix logarithm, .\|.\| is the Frobenius matrix norm, tr\mathrm{tr} is the trace operator and devnX\mathrm{dev}_n X is the nn-dimensional deviator of XRn×nX\in\mathbb{R}^{n\times n}. This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor ε=symu\varepsilon=\mathrm{sym}\nabla u, which is the symmetric part of the displacement gradient u\nabla u, and reveals a close geometric relation between the classical quadratic isotropic energy potential μdevnsymu2+κ2[tr(symu)]2=μdevnε2+κ2[tr(ε)]2\mu\,\|\mathrm{dev}_n\mathrm{sym}\nabla u\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\mathrm{sym}\nabla u)]^2=\mu\,\|\mathrm{dev}_n\varepsilon\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\varepsilon)]^2in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energyμdevnlogU2+κ2[tr(logU)]2=μωiso2+κ2ωvol2,\mu\,\|\mathrm{dev}_n\log U\|^2+\frac{\kappa}{2}\,[\mathrm{tr}(\log U)]^2=\mu\,\omega_{\rm iso}^2+\frac\kappa2\,\omega_{\rm vol}^2\,,where μ\mu is the shear modulus and κ\kappa denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor RR, where F=RUF=R\,U is the polar decomposition of FF. We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity
    corecore