597 research outputs found

    Identifying global optimality for dictionary learning

    Full text link
    Learning new representations of input observations in machine learning is often tackled using a factorization of the data. For many such problems, including sparse coding and matrix completion, learning these factorizations can be difficult, in terms of efficiency and to guarantee that the solution is a global minimum. Recently, a general class of objectives have been introduced-which we term induced dictionary learning models (DLMs)-that have an induced convex form that enables global optimization. Though attractive theoretically, this induced form is impractical, particularly for large or growing datasets. In this work, we investigate the use of practical alternating minimization algorithms for induced DLMs, that ensure convergence to global optima. We characterize the stationary points of these models, and, using these insights, highlight practical choices for the objectives. We then provide theoretical and empirical evidence that alternating minimization, from a random initialization, converges to global minima for a large subclass of induced DLMs. In particular, we take advantage of the existence of the (potentially unknown) convex induced form, to identify when stationary points are global minima for the dictionary learning objective. We then provide an empirical investigation into practical optimization choices for using alternating minimization for induced DLMs, for both batch and stochastic gradient descent.Comment: Updates to previous version include a small modification to Proposition 2, to only use normed regularizers, and a modification to the main theorem (previously Theorem 13) to focus on the overcomplete, full rank setting and to better characterize non-differentiable induced regularizers. The theory has been significantly modified since version

    Robust sketching for multiple square-root LASSO problems

    Full text link
    Many learning tasks, such as cross-validation, parameter search, or leave-one-out analysis, involve multiple instances of similar problems, each instance sharing a large part of learning data with the others. We introduce a robust framework for solving multiple square-root LASSO problems, based on a sketch of the learning data that uses low-rank approximations. Our approach allows a dramatic reduction in computational effort, in effect reducing the number of observations from mm (the number of observations to start with) to kk (the number of singular values retained in the low-rank model), while not sacrificing---sometimes even improving---the statistical performance. Theoretical analysis, as well as numerical experiments on both synthetic and real data, illustrate the efficiency of the method in large scale applications

    Randomized Nonnegative Matrix Factorization

    Full text link
    Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of `big data' has severely challenged our ability to compute this fundamental decomposition using deterministic algorithms. This paper presents a randomized hierarchical alternating least squares (HALS) algorithm to compute the NMF. By deriving a smaller matrix from the nonnegative input data, a more efficient nonnegative decomposition can be computed. Our algorithm scales to big data applications while attaining a near-optimal factorization. The proposed algorithm is evaluated using synthetic and real world data and shows substantial speedups compared to deterministic HALS.Comment: This is an extended and revised version of the paper which appeared in JPR

    Global and Local Structure Preserving Sparse Subspace Learning: An Iterative Approach to Unsupervised Feature Selection

    Full text link
    As we aim at alleviating the curse of high-dimensionality, subspace learning is becoming more popular. Existing approaches use either information about global or local structure of the data, and few studies simultaneously focus on global and local structures as the both of them contain important information. In this paper, we propose a global and local structure preserving sparse subspace learning (GLoSS) model for unsupervised feature selection. The model can simultaneously realize feature selection and subspace learning. In addition, we develop a greedy algorithm to establish a generic combinatorial model, and an iterative strategy based on an accelerated block coordinate descent is used to solve the GLoSS problem. We also provide whole iterate sequence convergence analysis of the proposed iterative algorithm. Extensive experiments are conducted on real-world datasets to show the superiority of the proposed approach over several state-of-the-art unsupervised feature selection approaches.Comment: 32 page, 6 figures and 60 reference

    Convolutional Neural Networks with Transformed Input based on Robust Tensor Network Decomposition

    Full text link
    Tensor network decomposition, originated from quantum physics to model entangled many-particle quantum systems, turns out to be a promising mathematical technique to efficiently represent and process big data in parsimonious manner. In this study, we show that tensor networks can systematically partition structured data, e.g. color images, for distributed storage and communication in privacy-preserving manner. Leveraging the sea of big data and metadata privacy, empirical results show that neighbouring subtensors with implicit information stored in tensor network formats cannot be identified for data reconstruction. This technique complements the existing encryption and randomization techniques which store explicit data representation at one place and highly susceptible to adversarial attacks such as side-channel attacks and de-anonymization. Furthermore, we propose a theory for adversarial examples that mislead convolutional neural networks to misclassification using subspace analysis based on singular value decomposition (SVD). The theory is extended to analyze higher-order tensors using tensor-train SVD (TT-SVD); it helps to explain the level of susceptibility of different datasets to adversarial attacks, the structural similarity of different adversarial attacks including global and localized attacks, and the efficacy of different adversarial defenses based on input transformation. An efficient and adaptive algorithm based on robust TT-SVD is then developed to detect strong and static adversarial attacks

    Orthogonal Deep Neural Networks

    Full text link
    In this paper, we introduce the algorithms of Orthogonal Deep Neural Networks (OrthDNNs) to connect with recent interest of spectrally regularized deep learning methods. OrthDNNs are theoretically motivated by generalization analysis of modern DNNs, with the aim to find solution properties of network weights that guarantee better generalization. To this end, we first prove that DNNs are of local isometry on data distributions of practical interest; by using a new covering of the sample space and introducing the local isometry property of DNNs into generalization analysis, we establish a new generalization error bound that is both scale- and range-sensitive to singular value spectrum of each of networks' weight matrices. We prove that the optimal bound w.r.t. the degree of isometry is attained when each weight matrix has a spectrum of equal singular values, among which orthogonal weight matrix or a non-square one with orthonormal rows or columns is the most straightforward choice, suggesting the algorithms of OrthDNNs. We present both algorithms of strict and approximate OrthDNNs, and for the later ones we propose a simple yet effective algorithm called Singular Value Bounding (SVB), which performs as well as strict OrthDNNs, but at a much lower computational cost. We also propose Bounded Batch Normalization (BBN) to make compatible use of batch normalization with OrthDNNs. We conduct extensive comparative studies by using modern architectures on benchmark image classification. Experiments show the efficacy of OrthDNNs.Comment: To Appear in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    A survey of dimensionality reduction techniques

    Full text link
    Experimental life sciences like biology or chemistry have seen in the recent decades an explosion of the data available from experiments. Laboratory instruments become more and more complex and report hundreds or thousands measurements for a single experiment and therefore the statistical methods face challenging tasks when dealing with such high dimensional data. However, much of the data is highly redundant and can be efficiently brought down to a much smaller number of variables without a significant loss of information. The mathematical procedures making possible this reduction are called dimensionality reduction techniques; they have widely been developed by fields like Statistics or Machine Learning, and are currently a hot research topic. In this review we categorize the plethora of dimension reduction techniques available and give the mathematical insight behind them

    Scalable Deep kk-Subspace Clustering

    Full text link
    Subspace clustering algorithms are notorious for their scalability issues because building and processing large affinity matrices are demanding. In this paper, we introduce a method that simultaneously learns an embedding space along subspaces within it to minimize a notion of reconstruction error, thus addressing the problem of subspace clustering in an end-to-end learning paradigm. To achieve our goal, we propose a scheme to update subspaces within a deep neural network. This in turn frees us from the need of having an affinity matrix to perform clustering. Unlike previous attempts, our method can easily scale up to large datasets, making it unique in the context of unsupervised learning with deep architectures. Our experiments show that our method significantly improves the clustering accuracy while enjoying cheaper memory footprints.Comment: To appear in ACCV 201

    Integrative Multi-View Reduced-Rank Regression: Bridging Group-Sparse and Low-Rank Models

    Full text link
    Multi-view data have been routinely collected in various fields of science and engineering. A general problem is to study the predictive association between multivariate responses and multi-view predictor sets, all of which can be of high dimensionality. It is likely that only a few views are relevant to prediction, and the predictors within each relevant view contribute to the prediction collectively rather than sparsely. We cast this new problem under the familiar multivariate regression framework and propose an integrative reduced-rank regression (iRRR), where each view has its own low-rank coefficient matrix. As such, latent features are extracted from each view in a supervised fashion. For model estimation, we develop a convex composite nuclear norm penalization approach, which admits an efficient algorithm via alternating direction method of multipliers. Extensions to non-Gaussian and incomplete data are discussed. Theoretically, we derive non-asymptotic oracle bounds of iRRR under a restricted eigenvalue condition. Our results recover oracle bounds of several special cases of iRRR including Lasso, group Lasso and nuclear norm penalized regression. Therefore, iRRR seamlessly bridges group-sparse and low-rank methods and can achieve substantially faster convergence rate under realistic settings of multi-view learning. Simulation studies and an application in the Longitudinal Studies of Aging further showcase the efficacy of the proposed methods

    Inferring biological networks by sparse identification of nonlinear dynamics

    Full text link
    Inferring the structure and dynamics of network models is critical to understanding the functionality and control of complex systems, such as metabolic and regulatory biological networks. The increasing quality and quantity of experimental data enable statistical approaches based on information theory for model selection and goodness-of-fit metrics. We propose an alternative method to infer networked nonlinear dynamical systems by using sparsity-promoting â„“1\ell_1 optimization to select a subset of nonlinear interactions representing dynamics on a fully connected network. Our method generalizes the sparse identification of nonlinear dynamics (SINDy) algorithm to dynamical systems with rational function nonlinearities, such as biological networks. We show that dynamical systems with rational nonlinearities may be cast in an implicit form, where the equations may be identified in the null-space of a library of mixed nonlinearities including the state and derivative terms; this approach applies more generally to implicit dynamical systems beyond those containing rational nonlinearities. This method, implicit-SINDy, succeeds in inferring three canonical biological models: Michaelis-Menten enzyme kinetics, the regulatory network for competence in bacteria, and the metabolic network for yeast glycolysis.Comment: 11 pages, 6 figure
    • …
    corecore