3,744 research outputs found

    Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model

    Full text link
    Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted.Comment: 29 pages, 10 figures, revisio

    Torsional Monopoles and Torqued Geometries in Gravity and Condensed Matter

    Full text link
    Torsional degrees of freedom play an important role in modern gravity theories as well as in condensed matter systems where they can be modeled by defects in solids. Here we isolate a class of torsion models that support torsion configurations with a localized, conserved charge that adopts integer values. The charge is topological in nature and the torsional configurations can be thought of as torsional `monopole' solutions. We explore some of the properties of these configurations in gravity models with non-vanishing curvature, and discuss the possible existence of such monopoles in condensed matter systems. To conclude, we show how the monopoles can be thought of as a natural generalization of the Cartan spiral staircase.Comment: 4+epsilon, 1 figur

    Four bugs on a rectangle

    Get PDF
    The problem of four bugs in cyclic pursuit starting from a 2-by-1 rectangle is considered, and asymptotic formulas are derived to describe the motion. In contrast to the famous case of four bugs on a square, here the trajectories quickly freeze to essentially one dimension. After the first rotation about the centre point, the scale of the configuration has shrunk by a factor of 10^427907250, and this number is then exponentiated four more times with each successive cycle. Relations to Knuth’s double-arrow notation and level-index arithmetic are discussed

    Labeling Subway Lines

    Get PDF
    Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line with axis-parallel rectangular labels of equal height. Our aim is to maximize label size under the constraint that all points must be labeled. Even a seemingly strong simplification of the general point-labeling problem, namely to decide whether a set of points on a horizontal line can be labeled with sliding rectangular labels, turns out to be weakly NPcomplete. This is the first labeling problem that is known to belong to this class. We give a pseudo-polynomial time algorithm for it. In case of a sloping line points can be labeled with maximum-size square labels in O(n log n) time if four label positions per point are allowed and in O(n 3 log n) time if labels can slide. We also investigate rectangular labels

    DISTORTION-CONTROLLED ISOTROPIC SWELLING AND SELF-ASSEMBLY OF TRIPLY-PERIODIC MINIMAL SURFACES

    Get PDF
    In the first part of this thesis, I propose a method that allows us to construct optimal swelling patterns that are compatible with experimental constraints. This is done using a greedy algorithm that systematically increases the perimeter of the target surface with the help of minimum length cuts. This reduces the areal distortion that comes from the changing Gaussian curvature of the sheet. The results of our greedy cutting algorithm are tested on surfaces of constant and varying Gaussian curvature, and are additionally validated with finite thickness simulations using a modified Seung-Nelson model. In the second part of the thesis, we focus on self-assembly methods as an alternate approach to program specific desired structures. More specifically, we develop theoretical design rules for triply-periodic minimal surfaces (TPMS) and show how their symmetry properties can be used to program a minimum number triangular particle-types that successfully coalesce into the TPMS shape. We finally simulate our design rules with Monte Carlo methods and study the robustness of the self-assembled structures upon changing different system parameters like elastic moduli
    • …
    corecore