15,750 research outputs found

    Luminosity measurement method for the LHC: The detector requirements studies

    Get PDF
    Absolute normalisation of the LHC measurements with a precision of O(1%) is desirable but beyond the reach of the present LHC detectors. This series of papers proposes and evaluates a measurement method capable to achieve such a precision target. In our earlier paper we have selected the phase-space region where the lepton pair production cross section in pp collisions at the LHC can be controlled with < 1 % precision and is large enough to reach a comparable statistical accuracy of the absolute luminosity measurement on the day-by-day basis. In the present one the performance requirements for a dedicated detector, indispensable to efficiently select events in the proposed phase-space region, are discussed.Comment: 26 pages, 13 figure

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version

    Push recovery with stepping strategy based on time-projection control

    Get PDF
    In this paper, we present a simple control framework for on-line push recovery with dynamic stepping properties. Due to relatively heavy legs in our robot, we need to take swing dynamics into account and thus use a linear model called 3LP which is composed of three pendulums to simulate swing and torso dynamics. Based on 3LP equations, we formulate discrete LQR controllers and use a particular time-projection method to adjust the next footstep location on-line during the motion continuously. This adjustment, which is found based on both pelvis and swing foot tracking errors, naturally takes the swing dynamics into account. Suggested adjustments are added to the Cartesian 3LP gaits and converted to joint-space trajectories through inverse kinematics. Fixed and adaptive foot lift strategies also ensure enough ground clearance in perturbed walking conditions. The proposed structure is robust, yet uses very simple state estimation and basic position tracking. We rely on the physical series elastic actuators to absorb impacts while introducing simple laws to compensate their tracking bias. Extensive experiments demonstrate the functionality of different control blocks and prove the effectiveness of time-projection in extreme push recovery scenarios. We also show self-produced and emergent walking gaits when the robot is subject to continuous dragging forces. These gaits feature dynamic walking robustness due to relatively soft springs in the ankles and avoiding any Zero Moment Point (ZMP) control in our proposed architecture.Comment: 20 pages journal pape

    A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

    Get PDF
    In this paper we show and discuss the use of a versatile interaction potential approach coupled with an immersed boundary method to simulate a variety of flows involving deformable bodies. In particular, we focus on two kinds of problems, namely (i) deformation of liquid-liquid interfaces and (ii) flow in the left ventricle of the heart with either a mechanical or a natural valve. Both examples have in common the two-way interaction of the flow with a deformable interface or a membrane. The interaction potential approach (de Tullio & Pascazio, Jou. Comp. Phys., 2016; Tanaka, Wada and Nakamura, Computational Biomechanics, 2016) with minor modifications can be used to capture the deformation dynamics in both classes of problems. We show that the approach can be used to replicate the deformation dynamics of liquid-liquid interfaces through the use of ad-hoc elastic constants. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as deforming drop in a shear flow or a cross flow. We show that the same potential approach can also be used to study the flow in the left ventricle of the heart. The flow imposed into the ventricle interacts dynamically with the mitral valve (mechanical or natural) and the ventricle which are simulated using the same model. Results from these simulations are compared with ad- hoc in-house experimental measurements. Finally, a parallelisation scheme is presented, as parallelisation is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies on hundreds of distributed memory computing processors
    • …
    corecore