2,675 research outputs found

    Elastic shape matching of parameterized surfaces using square root normal fields.

    Get PDF
    In this paper we define a new methodology for shape analysis of parameterized surfaces, where the main issues are: (1) choice of metric for shape comparisons and (2) invariance to reparameterization. We begin by defining a general elastic metric on the space of parameterized surfaces. The main advantages of this metric are twofold. First, it provides a natural interpretation of elastic shape deformations that are being quantified. Second, this metric is invariant under the action of the reparameterization group. We also introduce a novel representation of surfaces termed square root normal fields or SRNFs. This representation is convenient for shape analysis because, under this representation, a reduced version of the general elastic metric becomes the simple \ensuremathL2\ensuremathL2 metric. Thus, this transformation greatly simplifies the implementation of our framework. We validate our approach using multiple shape analysis examples for quadrilateral and spherical surfaces. We also compare the current results with those of Kurtek et al. [1]. We show that the proposed method results in more natural shape matchings, and furthermore, has some theoretical advantages over previous methods

    Gauge Invariant Framework for Shape Analysis of Surfaces

    Full text link
    This paper describes a novel framework for computing geodesic paths in shape spaces of spherical surfaces under an elastic Riemannian metric. The novelty lies in defining this Riemannian metric directly on the quotient (shape) space, rather than inheriting it from pre-shape space, and using it to formulate a path energy that measures only the normal components of velocities along the path. In other words, this paper defines and solves for geodesics directly on the shape space and avoids complications resulting from the quotient operation. This comprehensive framework is invariant to arbitrary parameterizations of surfaces along paths, a phenomenon termed as gauge invariance. Additionally, this paper makes a link between different elastic metrics used in the computer science literature on one hand, and the mathematical literature on the other hand, and provides a geometrical interpretation of the terms involved. Examples using real and simulated 3D objects are provided to help illustrate the main ideas.Comment: 15 pages, 11 Figures, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence in a better resolutio

    Constructing reparametrization invariant metrics on spaces of plane curves

    Get PDF
    Metrics on shape space are used to describe deformations that take one shape to another, and to determine a distance between them. We study a family of metrics on the space of curves, that includes several recently proposed metrics, for which the metrics are characterised by mappings into vector spaces where geodesics can be easily computed. This family consists of Sobolev-type Riemannian metrics of order one on the space Imm(S1,R2)\text{Imm}(S^1,\mathbb R^2) of parametrized plane curves and the quotient space Imm(S1,R2)/Diff(S1)\text{Imm}(S^1,\mathbb R^2)/\text{Diff}(S^1) of unparametrized curves. For the space of open parametrized curves we find an explicit formula for the geodesic distance and show that the sectional curvatures vanish on the space of parametrized and are non-negative on the space of unparametrized open curves. For the metric, which is induced by the "R-transform", we provide a numerical algorithm that computes geodesics between unparameterised, closed curves, making use of a constrained formulation that is implemented numerically using the RATTLE algorithm. We illustrate the algorithm with some numerical tests that demonstrate it's efficiency and robustness.Comment: 27 pages, 4 figures. Extended versio

    Numerical inversion of SRNFs for efficient elastic shape analysis of star-shaped objects.

    Get PDF
    The elastic shape analysis of surfaces has proven useful in several application areas, including medical image analysis, vision, and graphics. This approach is based on defining new mathematical representations of parameterized surfaces, including the square root normal field (SRNF), and then using the L2 norm to compare their shapes. Past work is based on using the pullback of the L2 metric to the space of surfaces, performing statistical analysis under this induced Riemannian metric. However, if one can estimate the inverse of the SRNF mapping, even approximately, a very efficient framework results: the surfaces, represented by their SRNFs, can be efficiently analyzed using standard Euclidean tools, and only the final results need be mapped back to the surface space. Here we describe a procedure for inverting SRNF maps of star-shaped surfaces, a special case for which analytic results can be obtained. We test our method via the classification of 34 cases of ADHD (Attention Deficit Hyperactivity Disorder), plus controls, in the Detroit Fetal Alcohol and Drug Exposure Cohort study. We obtain state-of-the-art results

    The Square Root Velocity Framework for Curves in a Homogeneous Space

    Full text link
    In this paper we study the shape space of curves with values in a homogeneous space M=G/KM = G/K, where GG is a Lie group and KK is a compact Lie subgroup. We generalize the square root velocity framework to obtain a reparametrization invariant metric on the space of curves in MM. By identifying curves in MM with their horizontal lifts in GG, geodesics then can be computed. We can also mod out by reparametrizations and by rigid motions of MM. In each of these quotient spaces, we can compute Karcher means, geodesics, and perform principal component analysis. We present numerical examples including the analysis of a set of hurricane paths.Comment: To appear in 3rd International Workshop on Diff-CVML Workshop, CVPR 201

    A discrete framework to find the optimal matching between manifold-valued curves

    Full text link
    The aim of this paper is to find an optimal matching between manifold-valued curves, and thereby adequately compare their shapes, seen as equivalent classes with respect to the action of reparameterization. Using a canonical decomposition of a path in a principal bundle, we introduce a simple algorithm that finds an optimal matching between two curves by computing the geodesic of the infinite-dimensional manifold of curves that is at all time horizontal to the fibers of the shape bundle. We focus on the elastic metric studied in the so-called square root velocity framework. The quotient structure of the shape bundle is examined, and in particular horizontality with respect to the fibers. These results are more generally given for any elastic metric. We then introduce a comprehensive discrete framework which correctly approximates the smooth setting when the base manifold has constant sectional curvature. It is itself a Riemannian structure on the product manifold of "discrete curves" given by a finite number of points, and we show its convergence to the continuous model as the size of the discretization goes to infinity. Illustrations of optimal matching between discrete curves are given in the hyperbolic plane, the plane and the sphere, for synthetic and real data, and comparison with dynamic programming is established
    • …
    corecore