7,694 research outputs found

    On the Generation of Realistic and Robust Counterfactual Explanations for Algorithmic Recourse

    Get PDF
    This recent widespread deployment of machine learning algorithms presents many new challenges. Machine learning algorithms are usually opaque and can be particularly difficult to interpret. When humans are involved, algorithmic and automated decisions can negatively impact people’s lives. Therefore, end users would like to be insured against potential harm. One popular way to achieve this is to provide end users access to algorithmic recourse, which gives end users negatively affected by algorithmic decisions the opportunity to reverse unfavorable decisions, e.g., from a loan denial to a loan acceptance. In this thesis, we design recourse algorithms to meet various end user needs. First, we propose methods for the generation of realistic recourses. We use generative models to suggest recourses likely to occur under the data distribution. To this end, we shift the recourse action from the input space to the generative model’s latent space, allowing to generate counterfactuals that lie in regions with data support. Second, we observe that small changes applied to the recourses prescribed to end users likely invalidate the suggested recourse after being nosily implemented in practice. Motivated by this observation, we design methods for the generation of robust recourses and for assessing the robustness of recourse algorithms to data deletion requests. Third, the lack of a commonly used code-base for counterfactual explanation and algorithmic recourse algorithms and the vast array of evaluation measures in literature make it difficult to compare the per formance of different algorithms. To solve this problem, we provide an open source benchmarking library that streamlines the evaluation process and can be used for benchmarking, rapidly developing new methods, and setting up new experiments. In summary, our work contributes to a more reliable interaction of end users and machine learned models by covering fundamental aspects of the recourse process and suggests new solutions towards generating realistic and robust counterfactual explanations for algorithmic recourse

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    DenMerD: a feature enhanced approach to radar beam blockage correction with edge-cloud computing

    Get PDF
    In the field of meteorology, the global radar network is indispensable for detecting weather phenomena and offering early warning services. Nevertheless, radar data frequently exhibit anomalies, including gaps and clutter, arising from atmospheric refraction, equipment malfunctions, and other factors, resulting in diminished data quality. Traditional radar blockage correction methods, such as employing approximate radial information interpolation and supplementing missing data, often fail to effectively exploit potential patterns in massive radar data, for the large volume of data precludes a thorough analysis and understanding of the inherent complex patterns and dependencies through simple interpolation or supplementation techniques. Fortunately, edge computing possesses certain data processing capabilities and cloud center boasts substantial computational power, which together can collaboratively offer timely computation and storage for the correction of radar beam blockage. To this end, an edge-cloud collaborative driven deep learning model named DenMerD is proposed in this paper, which includes dense connection module and merge distribution (MD) unit. Compared to existing models such as RC-FCN, DenseNet, and VGG, this model greatly improves key performance metrics, with 30.7% improvement in Critical Success Index (CSI), 30.1% improvement in Probability of Detection (POD), and 3.1% improvement in False Alarm Rate (FAR). It also performs well in the Structure Similarity Index Measure (SSIM) metrics compared to its counterparts. These findings underscore the efficacy of the design in improving feature propagation and beam blockage accuracy, and also highlights the potential and value of mobile edge computing in processing large-scale meteorological data

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Resilience and food security in a food systems context

    Get PDF
    This open access book compiles a series of chapters written by internationally recognized experts known for their in-depth but critical views on questions of resilience and food security. The book assesses rigorously and critically the contribution of the concept of resilience in advancing our understanding and ability to design and implement development interventions in relation to food security and humanitarian crises. For this, the book departs from the narrow beaten tracks of agriculture and trade, which have influenced the mainstream debate on food security for nearly 60 years, and adopts instead a wider, more holistic perspective, framed around food systems. The foundation for this new approach is the recognition that in the current post-globalization era, the food and nutritional security of the world’s population no longer depends just on the performance of agriculture and policies on trade, but rather on the capacity of the entire (food) system to produce, process, transport and distribute safe, affordable and nutritious food for all, in ways that remain environmentally sustainable. In that context, adopting a food system perspective provides a more appropriate frame as it incites to broaden the conventional thinking and to acknowledge the systemic nature of the different processes and actors involved. This book is written for a large audience, from academics to policymakers, students to practitioners

    The regulation of digital platforms: the case of pagoPA

    Get PDF
    How can EU regulation affect innovation. Digital revolution: How big data have changed the world and the legal landscape. The regulation of digital platforms in Europe. Digital revolution: How distributed ledger technologies are changing the world and the legal landscape. Regulation of digital payments: the case of pagopa

    Systemic Circular Economy Solutions for Fiber Reinforced Composites

    Get PDF
    This open access book provides an overview of the work undertaken within the FiberEUse project, which developed solutions enhancing the profitability of composite recycling and reuse in value-added products, with a cross-sectorial approach. Glass and carbon fiber reinforced polymers, or composites, are increasingly used as structural materials in many manufacturing sectors like transport, constructions and energy due to their better lightweight and corrosion resistance compared to metals. However, composite recycling is still a challenge since no significant added value in the recycling and reprocessing of composites is demonstrated. FiberEUse developed innovative solutions and business models towards sustainable Circular Economy solutions for post-use composite-made products. Three strategies are presented, namely mechanical recycling of short fibers, thermal recycling of long fibers and modular car parts design for sustainable disassembly and remanufacturing. The validation of the FiberEUse approach within eight industrial demonstrators shows the potentials towards new Circular Economy value-chains for composite materials
    • …
    corecore