6,492 research outputs found

    A Multi-modal Brain Image Registration Framework for US-guided Neuronavigation Systems - Integrating MR and US for Minimally Invasive Neuroimaging

    Get PDF
    US-guided neuronavigation exploits the simplicity of use and minimal invasiveness of Ultrasound (US) imaging and the high tissue resolution and signal-to-noise ratio of Magnetic Resonance Imaging (MRI) to guide brain surgeries. More specifically, the intra-operative 3D US images are combined with pre-operative MR images to accurately localise the course of instruments in the operative field with minimal invasiveness. Multi-modal image registration of 3D US and MR images is an essential part of such system. In this paper, we present a complete software framework that enables the registration US and MR brain scans based on a multi resolution deformable transform, tackling elastic deformations (i.e. brain shifts) possibly occurring during the surgical procedure. The framework supports also simpler and faster registration techniques, based on rigid or affine transforms, and enables the interactive visualisation and rendering of the overlaid US and MRI volumes. The registration was experimentally validated on a public dataset of realistic brain phantom images, at different levels of artificially induced deformations

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Prostate Biopsy Assistance System with Gland Deformation Estimation for Enhanced Precision

    Full text link
    Computer-assisted prostate biopsies became a very active research area during the last years. Prostate tracking makes it possi- ble to overcome several drawbacks of the current standard transrectal ultrasound (TRUS) biopsy procedure, namely the insufficient targeting accuracy which may lead to a biopsy distribution of poor quality, the very approximate knowledge about the actual location of the sampled tissues which makes it difficult to implement focal therapy strategies based on biopsy results, and finally the difficulty to precisely reach non-ultrasound (US) targets stemming from different modalities, statistical atlases or previous biopsy series. The prostate tracking systems presented so far are limited to rigid transformation tracking. However, the gland can get considerably deformed during the intervention because of US probe pres- sure and patient movements. We propose to use 3D US combined with image-based elastic registration to estimate these deformations. A fast elastic registration algorithm that copes with the frequently occurring US shadows is presented. A patient cohort study was performed, which yielded a statistically significant in-vivo accuracy of 0.83+-0.54mm.Comment: This version of the paper integrates a correction concerning the local similarity measure w.r.t. the proceedings (this typing error could not be corrected before editing the proceedings

    Atlas-Based Prostate Segmentation Using an Hybrid Registration

    Full text link
    Purpose: This paper presents the preliminary results of a semi-automatic method for prostate segmentation of Magnetic Resonance Images (MRI) which aims to be incorporated in a navigation system for prostate brachytherapy. Methods: The method is based on the registration of an anatomical atlas computed from a population of 18 MRI exams onto a patient image. An hybrid registration framework which couples an intensity-based registration with a robust point-matching algorithm is used for both atlas building and atlas registration. Results: The method has been validated on the same dataset that the one used to construct the atlas using the "leave-one-out method". Results gives a mean error of 3.39 mm and a standard deviation of 1.95 mm with respect to expert segmentations. Conclusions: We think that this segmentation tool may be a very valuable help to the clinician for routine quantitative image exploitation.Comment: International Journal of Computer Assisted Radiology and Surgery (2008) 000-99

    MRI/TRUS data fusion for brachytherapy

    Full text link
    BACKGROUND: Prostate brachytherapy consists in placing radioactive seeds for tumour destruction under transrectal ultrasound imaging (TRUS) control. It requires prostate delineation from the images for dose planning. Because ultrasound imaging is patient- and operator-dependent, we have proposed to fuse MRI data to TRUS data to make image processing more reliable. The technical accuracy of this approach has already been evaluated. METHODS: We present work in progress concerning the evaluation of the approach from the dosimetry viewpoint. The objective is to determine what impact this system may have on the treatment of the patient. Dose planning is performed from initial TRUS prostate contours and evaluated on contours modified by data fusion. RESULTS: For the eight patients included, we demonstrate that TRUS prostate volume is most often underestimated and that dose is overestimated in a correlated way. However, dose constraints are still verified for those eight patients. CONCLUSIONS: This confirms our initial hypothesis

    Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation

    Full text link
    In this paper we present a methodology to address the problem of brain tissue deformation referred to as 'brain-shift'. This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on pre-operative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intra-operative image-guided system, we describe a procedure to generate patient specific finite element meshes of the brain and propose a biomechanical model which can take into account tissue deformations and surgical procedures that modify the brain structure, like tumour or tissue resection

    Robust Cardiac Motion Estimation using Ultrafast Ultrasound Data: A Low-Rank-Topology-Preserving Approach

    Get PDF
    Cardiac motion estimation is an important diagnostic tool to detect heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of the complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate the cardiac motion using ultrafast ultrasound data. -- Our solution is based on a variational formulation characterized by the L2-regularized class. The displacement is represented by a lattice of b-splines and we ensure robustness by applying a maximum likelihood type estimator. While this is an important part of our solution, the main highlight of this paper is to combine a low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati Matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. While maintaining the accuracy of the solution, the low-rank preprocessing is shown to speed up the convergence of the variational problem. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that experience motion.Comment: 15 pages, 10 figures, Physics in Medicine and Biology, 201

    Prosper: image and robot-guided prostate brachytherapy

    Full text link
    Brachytherapy for localized prostate cancer consists in destroying cancer by introducing iodine radioactive seeds into the gland through hollow needles. The planning of the position of the seeds and their introduction into the prostate is based on intra-operative ultrasound (US) imaging. We propose to optimize the global quality of the procedure by: i) using 3D US; ii) enhancing US data with MRI registration; iii) using a specially designed needle-insertion robot, connected to the imaging data. The imaging methods have been successfully tested on patient data while the robot accuracy has been evaluated on a realistic deformable phantom

    Three-dimensional myocardial strain estimation from volumetric ultrasound: experimental validation in an animal model

    Get PDF
    Although real-time three-dimensional echocardiography has the potential to allow for more accurate assessment of global and regional ventricular dynamics compared to the more traditional two-dimensional ultrasound examinations, it still requires rigorous testing and validation against other accepted techniques should it breakthrough as a standard examination in routine clinical practice. Very few studies have looked at a validation of regional functional indices in an in-vivo context. The aim of the present study therefore was to validate a previously proposed 3D strain estimation-method based on elastic registration of subsequent volumes on a segmental level in an animal model. Volumetric images were acquired with a GE Vivid7 ultrasound system in five open-chest sheep instrumented with ultrasonic microcrystals. Radial (epsilon(RR)), longitudinal (epsilon(LL)) and circumferential strain (epsilon(CC)) were estimated during four stages: at rest, during esmolol and dobutamine infusion, and during acute ischemia. Moderate correlations for epsilon(LL) (r=0.63; p<0.01) and epsilon(CC) (r=0.60; p=0.01) were obtained, whereas no significant radial correlation was found. These findings are comparable to the performance of the current state-of-the-art commercial 3D speckle tracking methods

    Prostate biopsy tracking with deformation estimation

    Full text link
    Transrectal biopsies under 2D ultrasound (US) control are the current clinical standard for prostate cancer diagnosis. The isoechogenic nature of prostate carcinoma makes it necessary to sample the gland systematically, resulting in a low sensitivity. Also, it is difficult for the clinician to follow the sampling protocol accurately under 2D US control and the exact anatomical location of the biopsy cores is unknown after the intervention. Tracking systems for prostate biopsies make it possible to generate biopsy distribution maps for intra- and post-interventional quality control and 3D visualisation of histological results for diagnosis and treatment planning. They can also guide the clinician toward non-ultrasound targets. In this paper, a volume-swept 3D US based tracking system for fast and accurate estimation of prostate tissue motion is proposed. The entirely image-based system solves the patient motion problem with an a priori model of rectal probe kinematics. Prostate deformations are estimated with elastic registration to maximize accuracy. The system is robust with only 17 registration failures out of 786 (2%) biopsy volumes acquired from 47 patients during biopsy sessions. Accuracy was evaluated to 0.76±\pm0.52mm using manually segmented fiducials on 687 registered volumes stemming from 40 patients. A clinical protocol for assisted biopsy acquisition was designed and implemented as a biopsy assistance system, which allows to overcome the draw-backs of the standard biopsy procedure.Comment: Medical Image Analysis (2011) epub ahead of prin
    • …
    corecore