2,948 research outputs found

    Compliance error compensation in robotic-based milling

    Get PDF
    The paper deals with the problem of compliance errors compensation in robotic-based milling. Contrary to previous works that assume that the forces/torques generated by the manufacturing process are constant, the interaction between the milling tool and the workpiece is modeled in details. It takes into account the tool geometry, the number of teeth, the feed rate, the spindle rotation speed and the properties of the material to be processed. Due to high level of the disturbing forces/torques, the developed compensation technique is based on the non-linear stiffness model that allows us to modify the target trajectory taking into account nonlinearities and to avoid the chattering effect. Illustrative example is presented that deals with robotic-based milling of aluminum alloy

    ModĂšle des interactions dynamiques

    Get PDF
    In robotic-based machining, an interaction between the workpiece and technological tool causes essential deflections that significantly decrease the manufacturing accuracy. Relevant compliance errors highly depend on the manipulator configuration and essentially differ throughout the workspace. Their influence is especially important for heavy serial robots. To overcome this difficulty this report presents a new technique for compensation of the compliance errors caused by technological process. In contrast to previous works, this technique is based on the non-linear stiffness model and the reduced elasto-dynamic model of the robotic based milling process. The advantages and practical significance of the proposed approach are illustrated by milling with of KUKA KR270. It is shown that after error compensation technique significantly increase the accuracy of milling.ANR COROUSS

    Elasto-geometrical modeling and calibration of redundantly actuated PKMs

    No full text
    International audienceRedundantlyactuated parallel kinematic machines (PKMs) offer a number of advantages compared to classical non-redundant PKMs. Particularly, they show a better stiffness thanks to singularity avoidance and they have an improved repeatability due to a better behavior against backlashes. The main problem with the calibration of these machines is that the redundancy leads to some mechanical strains in their structure. This makes it difficult to identify the geometrical errors of their structure without taking into account the effects of the elastic deformations. The main originality of this work is to propose an efficient elasto-geometrical and calibration method that allows the identification of both the geometrical and stiffness parameters of redundantlyactuated parallel mechanisms with slender links. The first part of the paper explains the proposed method through its application on a simple redundant planar mechanism. The second part deals with its experimental application to the redundant Scissors Kinematics machine

    Elasto-geometrical modeling and calibration of robot manipulators: Application to machining and forming applications

    No full text
    International audienceThis paper proposes an original elasto-geometrical calibration method to improve the static pose accuracy of industrial robots involved in machining, forming or assembly applications. Two approaches are presented respectively based on an analytical parametric modeling and a Takagi-Sugeno fuzzy inference system. These are described and then discussed. This allows to list the main drawbacks and advantages of each of them with respect to the task and the user requirements. The Fuzzy Logic model is used in a model-based compensation scheme to increase significantly the robot static pose accuracy in a context of incremental forming application. Experimental results show the efficiency of the Fuzzy Logic model while minimizing development and computational resources

    Traceability of on-machine tool measurement: a review

    Get PDF
    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand

    Research on hybrid manufacturing using industrial robot

    Get PDF
    The applications of using industrial robots in hybrid manufacturing overcome many restrictions of the conventional manufacturing methods, such as small part building size, long building period, and limited material choices. However, some problems such as the uneven distribution of motion accuracy within robot working volume, the acceleration impact of robot under heavy external loads, few methods and facilities for increasing the efficiency of hybrid manufacturing process are still challenging. This dissertation aims to improve the applications of using industrial robot in hybrid manufacturing by addressing following three categories research issues. The first research issue proposed a novel concept view on robot accuracy and stiffness problem, for making the maximum usage of current manufacturing capability of robot system. Based on analyzing the robot forward/inverse kinematic, the angle error sensitivity of different joint and the stiffness matrix properties of robot, new evaluation formulations are established to help finding the best position and orientation to perform a specific trajectory within the robot\u27s working volume. The second research issue focus on the engineering improvements of robotic hybrid manufacturing. By adopting stereo vision, laser scanning technology and curved surface compensation algorithm, it enhances the automation level and adaptiveness of hybrid manufacturing process. The third research issue extends the robotic hybrid manufacturing process to the broader application area. A mini extruder with a variable pitch and progressive diameter screw is developed for large scale robotic deposition. The proposed robotic deposition system could increase the building efficiency and quality for large-size parts. Moreover, the research results of this dissertation can benefit a wide range of industries, such as automation manufacturing, robot design and 3D printing --Abstract, page iv

    An Improved Method for the Geometrical Calibration of Parallelogram-based Parallel Robots

    No full text
    International audienceThis paper presents an improved method for the geometrical calibration of parallel robots for which the structure is based upon some parallelogram mechanisms. Its originality is to identify the complete geometry of the mechanism's parallelograms, and to compensate the positioning error of the TCP (Tool Centre Point), due to the infinitesimal rotation of the traveling plate, induced by the parallelogram geometrical errors. The main difficulties are: (i) to derive the calibration model relative to all geometrical parameters, and (ii) to reuse the identified errors in a control model in order to compensate the positioning errors. In fact, the position relationship taking into account the full geometry of the parallelograms is difficult, not to say impossible, to derive in a close form; therefore a linear approximation of the model is proposed. The formulas necessary to run the method on a Delta robot are given. Then a simple mechanism is used to illustrate the benefits of this method compared to classical ones

    Improving robotic machining accuracy through experimental error investigation and modular compensation

    Get PDF
    Machining using industrial robots is currently limited to applications with low geometrical accuracies and soft materials. This paper analyzes the sources of errors in robotic machining and characterizes them in amplitude and frequency. Experiments under different conditions represent a typical set of industrial applications and allow a qualified evaluation. Based on this analysis, a modular approach is proposed to overcome these obstacles, applied both during program generation (offline) and execution (online). Predictive offline compensation of machining errors is achieved by means of an innovative programming system, based on kinematic and dynamic robot models. Real-time adaptive machining error compensation is also provided by sensing the real robot positions with an innovative tracking system and corrective feedback to both the robot and an additional high-dynamic compensation mechanism on piezo-actuator basis

    Design and Applications of Coordinate Measuring Machines

    Get PDF
    Coordinate measuring machines (CMMs) have been conventionally used in industry for 3-dimensional and form-error measurements of macro parts for many years. Ever since the first CMM, developed by Ferranti Co. in the late 1950s, they have been regarded as versatile measuring equipment, yet many CMMs on the market still have inherent systematic errors due to the violation of the Abbe Principle in its design. Current CMMs are only suitable for part tolerance above 10 ÎŒm. With the rapid advent of ultraprecision technology, multi-axis machining, and micro/nanotechnology over the past twenty years, new types of ultraprecision and micro/nao-CMMs are urgently needed in all aspects of society. This Special Issue accepted papers revealing novel designs and applications of CMMs, including structures, probes, miniaturization, measuring paths, accuracy enhancement, error compensation, etc. Detailed design principles in sciences, and technological applications in high-tech industries, were required for submission. Topics covered, but were not limited to, the following areas: 1. New types of CMMs, such as Abbe-free, multi-axis, cylindrical, parallel, etc. 2. New types of probes, such as touch-trigger, scanning, hybrid, non-contact, microscopic, etc. 3. New types of Micro/nano-CMMs. 4. New types of measuring path strategy, such as collision avoidance, free-form surface, aspheric surface, etc. 5. New types of error compensation strategy

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world
    • 

    corecore