6 research outputs found

    Pattern-Oriented Transformations between Analysis and Design Models (POTAD)

    Get PDF
    One answer to many current challenges in the electronic domain of automotive development, is a continuous model-based engineering process that integrates models of system and software development. A system model describes by the use of the logical system architecture the func-tions of a vehicle and through the technical system architecture the realising electronics, such as control units, sensors/actuators and data busses. During software development, a software design model for selected functions of the logical system architecture must be constructed with consideration of the technical architecture and further requirements. Current model-based development approaches claim to automate the transition between different development phases by the concept of model transformations. This concept lends itself to generate a skele-ton of the software design model from the system architecture model, thereby automating a part of the software engineering activities. The analysis of this work shows that the collected domain specific requirements, which must be made on a model transformation mechanism for such a scenario, are not fulfilled by current approaches. The approach taken in this work, the Pattern-Oriented Transformations between Analysis and Designmodels (POTAD) uses the system architecture as an analysis model within software development and systemizes the connection with the design model on the basis of analysis and design patterns. By means of this systematisation, a POTAD transformation rule instantiates for an analysis pattern different design patterns under consideration of non-functional requirements and the technical system architecture. At the same time, links between an analysis and design pattern are created, which are used to trace design decision later. The feasibility of the solution is shown by a prototype, which follows the POTAD development process and executes the transformation rules formulated in the POTAD transformation lan-guage.POTAD was verified by several student works based on a case study, which covers typical characteristics of the examined domain. The results of these works showed the suitability and improved the methodology as well as the transformation language and pointed out the limits of the approach taken.Eine Antwort auf viele aktuelle Anforderungen im Elektrik/Elektronik-Bereich der Fahrzeugent-wicklung ist ein durchgängig modellbasierter Entwicklungsprozess, der Modelle der System- und Softwareentwicklung integriert. Ein Systemmodell beschreibt mit der logischen System-architektur die Funktionen eines Fahrzeugs und mit der technischen Systemarchitektur die realisierende Elektrik/Elektronik, wie z. B. Steuergeräte, Sensoren/Aktoren und Bussysteme. Im Rahmen der Softwareentwicklung muss für einzelne Funktionen aus der logischen System-architektur unter Berücksichtigung der technischen Systemarchitektur und weiterer An-forderungen ein Softwaredesignmodell erstellt werden. Aktuelle modellbasierte Entwicklungs-ansätze versprechen mit Hilfe des Konzepts der Modelltransformation den Übergang zwischen Modellen unterschiedlicher Entwicklungsphasen automatisieren zu können. Dieses Konzept bietet sich dazu an, aus einem Systemarchitekturmodell ein Grundgerüst eines Softwaredesign-modells zu erzeugen und damit einen Teil der Softwareentwicklungsaktivitäten zu auto-matisieren.Die Analyse dieser Arbeit zeigt, dass die erarbeiteten domänenspezifischen Anforderungen, die für solch ein Szenario an einen Modelltransformationsmechanismus gestellt werden müssen, durch aktuelle Ansätze nicht vollständig erfüllt werden. Der eigene Ansatz Pattern-Oriented Transformations between Analysis and Designmodels (POTAD) verwendet die logische Systemarchitektur im Rahmen der Softwareentwicklung als Analysemodell und systematisiert dessen Zusammenhang mit dem Designmodell auf der Basis von Analyse- und Designmustern. Für ein im Analysemodell gefundenes Analysemuster instanziiert eine POTAD-Transformationsregel mit Hilfe dieser Systematik in Abhängigkeit nichtfunktionaler An-forderungen und der technischen Systemarchitektur unterschiedliche Designmuster im Design-modell. Gleichzeitig werden Verknüpfungen zwischen den Analyse- und Designmustern angelegt, die zur späteren Verfolgung von Designentscheidungen genutzt werden. Anhand eines dem POTAD-Entwicklungsprozess folgenden Prototyps, der die in der POTAD-Transformationssprache formulierten Regeln ausführen kann und die Verfolgbarkeit werkzeug-seitig unterstützt, wird die Realisierbarkeit des Lösungsansatzes gezeigt. POTAD wurde durch studentische Arbeiten anhand einer Fallstudie überprüft, die typische Eigenschaften der betrachteten Domäne abdeckt. Die Ergebnisse dieser Arbeiten haben die Tauglichkeit von POTAD gezeigt, die Methodik und die Transformationssprache verbessert und Grenzen aufgezeigt

    Methodik zur durchgängigen Entwicklung verteilter Systeme mit Echtzeitbedingungen für Rundrufnetze

    Get PDF

    Modellbasierte Entwicklung und Optimierung flexibler zeitgesteuerter Architekturen im Fahrzeugserienbereich

    Get PDF

    Methoden und Ansätze für die Entwicklung und den Test prädiktiver Fahrzeugregelungsfunktionen

    Get PDF
    In dieser Arbeit werden das aktuelle Vorgehen und die Prozesse in der automobilen Produktentwicklung sowie die etablierten Methoden für die Entwicklung, Verifikation und Validierung von Fahrzeugregelungsfunktionen analysiert. Dem wird eine Taxonomie und Analyse aktueller Serienanwendungen und Forschungskonzepte gegenüber gestellt. Ziel ist es, durch eine ganzheitliche Betrachtung die aktuellen Rahmenbedingungen und Herausforderungen bei der Entwicklung innovativer Funktionen für die Automatisierung der Fahraufgabe zu identifizieren. Auf dieser Grundlage wird ein neuartiges Konzept für die Entwicklung und den Test prädiktiver Fahrzeugregelungsfunktionen erarbeitet. Das Kernstück des entwickelten Konzepts stellt die Reactive-Replay Methode dar. Sie ermöglicht eine enge Verzahnung von Erprobungsfahrten in der realen Welt mit der Ausführung der entwickelten Fahrzeugfunktion innerhalb einer Simulationsumgebung. Die adaptive Wiedergabe von während der Erprobung aufgezeichneten Daten des fahrzeuginternen Kommunikationsnetzes ermöglicht einen nahtlosen Übergang von der realen Welt im Fahrzeug in die Simulation im Büro. Auf diese Weise können in der Realität aufgetretene Situationen und Szenarien detailliert und unter Laborbedingungen untersucht und für Tests wiederverwendet werden. Darüber hinaus ermöglicht dieser Ansatz eine effiziente Generierung valider Testszenarien, die durch ihre Vielfältigkeit und Varianz zu einer verbesserten Testabdeckung beitragen. Um die entwickelte Methode systematisch in den produktiven Alltag der Funktionsentwicklung zu integrieren, wird ein schlankes, iteratives Vorgehen zur prozessualen Integration der Reactive-Replay Methode vorgeschlagen. Die Verifikation in der Simulationsumgebung wird so mit der Validierung in der Fahrzeugerprobung gekoppelt. Dies unterstützt die frühzeitige und durchgängige Qualitätsbewertung der entwickelten Fahrzeugfunktion. Weiter wird eine Methode zur kontinuierlichen Überprüfung von Anforderungen während der Simulationsausführung untersucht. Ein Ansatz zur effizienten Auswahl von Testszenarien auf Basis der innerhalb eines Szenarios erreichten Parameterüberdeckung rundet die Arbeit ab

    Funktionale Sicherheit nach ISO 26262 in der Konzeptphase der Entwicklung von Elektrik/Elektronik Architekturen von Fahrzeugen

    Get PDF
    Die Entwicklung von softwarebasierten Fahrzeugsystemen unter Befolgung des neuen Standards IO 26262 erfordert ein gemeinsames Verständnis sowie die Verzahnung des Vorgehens in beiden Domänen. Ziel dieser Arbeit ist die Berücksichtigung von Anforderungen der funktionalen Sicherheit während der Modellierung von Elektrik/Elektronik Architekturen, ihre formale Zuteilung zu Modellinhalten sowie die Unterstützung nebenläufiger und nachfolgender Aktivitäten der Fahrzeugentwicklung

    Diagnosis of automotive electronic systems by structure analyses

    Get PDF
    In heutigen Fahrzeugsystemen ist ein großer Anteil der Funktionalität auf den Wunsch nach hoher Sicherheit, großem Komfort und der Reduktion der Schadstoffemissionen zurückzuführen. Diese Funktionen werden durch den Einsatz von immer mehr Elektrik und Elektronik realisiert, die im Rahmen der Fahrzeugdiagnose in der Werkstatt aufgrund der unübersehbaren Anzahl von Abhängigkeiten und Varianten nur schwer beherrscht werden können. Um diesen Problemen zu begegnen, werden in der Arbeit unterschiedliche Diagnoseverfahren miteinander verglichen und unter den Aspekten der effizienten Einbindung in den Entwicklungsprozess bei insgesamt guten Diagnoseergebnissen und Beherrschung der Variantenvielfalt bewertet. Dabei wurde ermittelt, dass kein bisher bekanntes Verfahren direkt diese Anforderungen erfüllt, und ein neuer Ansatz gefunden werden musste. Dieses Problem wurde gelöst, indem aus der Kombination der erkannten Stärken bekannter Diagnoseverfahren ein passendes neues Konzept entwickelt wurde. Für die neue Diagnoselösung wurde die bei probabilistischen Netzwerken verwendete Systemstruktur als wesentliches Element verwendet. Der wechselseitige Einfluss zwischen Funktionen und Steuergeräten wird systematisch betrachtet, indem die Fehlerfortpflanzungsmöglichkeiten direkt aus dem Entwicklungsprozess bestimmt werden. Dabei werden neben den üblicherweise für die Diagnose verwendeten elektrischen Abhängigkeiten auch logische Beziehungen in die Diagnoselösung einbezogen, die sich aus der Software und der Kommunikation der Steuergeräte untereinander ergeben. Wichtiger Aspekt der Betrachtungen ist die Frage "Wie hängen die Systemkomponenten voneinander ab?" um an sich völlig unterschiedliche Teilsysteme miteinander zu verbinden und diese Informationen für die Diagnose nutzbar zu machen. Gleichzeitig ist die praxisnahe Definition einer Anbindung an den Softwareentwicklungsprozess für eingebettete Systeme wesentlicher Bestandteil der Arbeit.In todays automotive systems a high percentage of the functionality is a result of the customers wish for security, comfort and reduced emissions. These functions are realized by more and more electric and electronic components. Existing garages' diagnostic systems insufficiently deal with the resulting systems because of the innumerable dependencies and variants. In order to address this problem, this paper compares different diagnostic approaches concerning their efficiency of the integration into the development process, diagnosis quality and variant management. As a result it is stated that no well-known method completely meets these requirements. Therefore a new approach has been developed consisting of a combination of the identified advantages of the known methods. As a basic element the new diagnostic system includes the system structure used by probabilistic networks. The reciprocal influence between functions and electronic control units is orderly addressed by deduction of the paths of error propagation from development models. Additionally to the derived electrical structures commonly used by diagnostic systems also logic dependencies are integrated into the diagnostic system. These logic dependencies are derived from software functions and communication links between electronic control units. In order to combine physically different parts of the system, an important question is "What are the system components interdependencies?" By answering this question, these dependencies can be used by a diagnosis system as part of a combined system structure. At the same time the practical definition of a connection to the development process for embedded systems is an essential part of the work
    corecore