1,150 research outputs found

    Eigenvalues and eigenfunctions of the Laplacian via inverse iteration with shift

    Full text link
    In this paper we present an iterative method, inspired by the inverse iteration with shift technique of finite linear algebra, designed to find the eigenvalues and eigenfunctions of the Laplacian with homogeneous Dirichlet boundary condition for arbitrary bounded domains Ω⊂RN\Omega\subset R^{N}. This method, which has a direct functional analysis approach, does not approximate the eigenvalues of the Laplacian as those of a finite linear operator. It is based on the uniform convergence away from nodal surfaces and can produce a simple and fast algorithm for computing the eigenvalues with minimal computational requirements, instead of using the ubiquitous Rayleigh quotient of finite linear algebra. Also, an alternative expression for the Rayleigh quotient in the associated infinite dimensional Sobolev space which avoids the integration of gradients is introduced and shown to be more efficient. The method can also be used in order to produce the spectral decomposition of any given function u∈L2(Ω)u\in L^{2}(\Omega).Comment: In this version the numerical tests in Section 6 were considerably improved and the Section 5 entitled "Normalization at each step" was introduced. Moreover, minor adjustments in the Section 1 (Introduction) and in the Section 7 (Fi nal Comments) were made. Breno Loureiro Giacchini was added as coautho

    Computing the first eigenpair of the p-Laplacian via inverse iteration of sublinear supersolutions

    Full text link
    We introduce an iterative method for computing the first eigenpair (λp,ep)(\lambda_{p},e_{p}) for the pp-Laplacian operator with homogeneous Dirichlet data as the limit of (μq,uq)(\mu_{q,}u_{q}) as q→p−q\rightarrow p^{-}, where uqu_{q} is the positive solution of the sublinear Lane-Emden equation −Δpuq=μquqq−1-\Delta_{p}u_{q}=\mu_{q}u_{q}^{q-1} with same boundary data. The method is shown to work for any smooth, bounded domain. Solutions to the Lane-Emden problem are obtained through inverse iteration of a super-solution which is derived from the solution to the torsional creep problem. Convergence of uqu_{q} to epe_{p} is in the C1C^{1}-norm and the rate of convergence of μq\mu_{q} to λp\lambda_{p} is at least O(p−q)O(p-q). Numerical evidence is presented.Comment: Section 5 was rewritten. Jed Brown was added as autho

    Quantitative Anderson localization of Schr\"odinger eigenstates under disorder potentials

    Full text link
    This paper concerns spectral properties of linear Schr\"odinger operators under oscillatory high-amplitude potentials on bounded domains. Depending on the degree of disorder, we prove the existence of spectral gaps amongst the lowermost eigenvalues and the emergence of exponentially localized states. We quantify the rate of decay in terms of geometric parameters that characterize the potential. The proofs are based on the convergence theory of iterative solvers for eigenvalue problems and their optimal local preconditioning by domain decomposition.Comment: accepted for publication in M3A

    Approximate Inference in Continuous Determinantal Point Processes

    Full text link
    Determinantal point processes (DPPs) are random point processes well-suited for modeling repulsion. In machine learning, the focus of DPP-based models has been on diverse subset selection from a discrete and finite base set. This discrete setting admits an efficient sampling algorithm based on the eigendecomposition of the defining kernel matrix. Recently, there has been growing interest in using DPPs defined on continuous spaces. While the discrete-DPP sampler extends formally to the continuous case, computationally, the steps required are not tractable in general. In this paper, we present two efficient DPP sampling schemes that apply to a wide range of kernel functions: one based on low rank approximations via Nystrom and random Fourier feature techniques and another based on Gibbs sampling. We demonstrate the utility of continuous DPPs in repulsive mixture modeling and synthesizing human poses spanning activity spaces

    Steklov Spectral Geometry for Extrinsic Shape Analysis

    Full text link
    We propose using the Dirichlet-to-Neumann operator as an extrinsic alternative to the Laplacian for spectral geometry processing and shape analysis. Intrinsic approaches, usually based on the Laplace-Beltrami operator, cannot capture the spatial embedding of a shape up to rigid motion, and many previous extrinsic methods lack theoretical justification. Instead, we consider the Steklov eigenvalue problem, computing the spectrum of the Dirichlet-to-Neumann operator of a surface bounding a volume. A remarkable property of this operator is that it completely encodes volumetric geometry. We use the boundary element method (BEM) to discretize the operator, accelerated by hierarchical numerical schemes and preconditioning; this pipeline allows us to solve eigenvalue and linear problems on large-scale meshes despite the density of the Dirichlet-to-Neumann discretization. We further demonstrate that our operators naturally fit into existing frameworks for geometry processing, making a shift from intrinsic to extrinsic geometry as simple as substituting the Laplace-Beltrami operator with the Dirichlet-to-Neumann operator.Comment: Additional experiments adde

    Compressive Wave Computation

    Full text link
    This paper considers large-scale simulations of wave propagation phenomena. We argue that it is possible to accurately compute a wavefield by decomposing it onto a largely incomplete set of eigenfunctions of the Helmholtz operator, chosen at random, and that this provides a natural way of parallelizing wave simulations for memory-intensive applications. This paper shows that L1-Helmholtz recovery makes sense for wave computation, and identifies a regime in which it is provably effective: the one-dimensional wave equation with coefficients of small bounded variation. Under suitable assumptions we show that the number of eigenfunctions needed to evolve a sparse wavefield defined on N points, accurately with very high probability, is bounded by C log(N) log(log(N)), where C is related to the desired accuracy and can be made to grow at a much slower rate than N when the solution is sparse. The PDE estimates that underlie this result are new to the authors' knowledge and may be of independent mathematical interest; they include an L1 estimate for the wave equation, an estimate of extension of eigenfunctions, and a bound for eigenvalue gaps in Sturm-Liouville problems. Numerical examples are presented in one spatial dimension and show that as few as 10 percents of all eigenfunctions can suffice for accurate results. Finally, we argue that the compressive viewpoint suggests a competitive parallel algorithm for an adjoint-state inversion method in reflection seismology.Comment: 45 pages, 4 figure

    Semiclassical bounds for spectra of biharmonic operators

    Full text link
    We provide complementary semiclassical bounds for the Riesz means R1(z)R_1(z) of the eigenvalues of various biharmonic operators, with a second term in the expected power of zz. The method we discuss makes use of the averaged variational principle (AVP), and yields two-sided bounds for individual eigenvalues, which are semiclassically sharp. The AVP also yields comparisons with Riesz means of different operators, in particular Laplacians
    • …
    corecore