223 research outputs found

    Control-theoretic Approach to Communication with Feedback: Fundamental Limits and Code Design

    Full text link
    Feedback communication is studied from a control-theoretic perspective, mapping the communication problem to a control problem in which the control signal is received through the same noisy channel as in the communication problem, and the (nonlinear and time-varying) dynamics of the system determine a subclass of encoders available at the transmitter. The MMSE capacity is defined to be the supremum exponential decay rate of the mean square decoding error. This is upper bounded by the information-theoretic feedback capacity, which is the supremum of the achievable rates. A sufficient condition is provided under which the upper bound holds with equality. For the special class of stationary Gaussian channels, a simple application of Bode's integral formula shows that the feedback capacity, recently characterized by Kim, is equal to the maximum instability that can be tolerated by the controller under a given power constraint. Finally, the control mapping is generalized to the N-sender AWGN multiple access channel. It is shown that Kramer's code for this channel, which is known to be sum rate optimal in the class of generalized linear feedback codes, can be obtained by solving a linear quadratic Gaussian control problem.Comment: Submitted to IEEE Transactions on Automatic Contro

    Comparison of Channels: Criteria for Domination by a Symmetric Channel

    Full text link
    This paper studies the basic question of whether a given channel VV can be dominated (in the precise sense of being more noisy) by a qq-ary symmetric channel. The concept of "less noisy" relation between channels originated in network information theory (broadcast channels) and is defined in terms of mutual information or Kullback-Leibler divergence. We provide an equivalent characterization in terms of χ2\chi^2-divergence. Furthermore, we develop a simple criterion for domination by a qq-ary symmetric channel in terms of the minimum entry of the stochastic matrix defining the channel VV. The criterion is strengthened for the special case of additive noise channels over finite Abelian groups. Finally, it is shown that domination by a symmetric channel implies (via comparison of Dirichlet forms) a logarithmic Sobolev inequality for the original channel.Comment: 31 pages, 2 figures. Presented at 2017 IEEE International Symposium on Information Theory (ISIT
    • …
    corecore