538 research outputs found

    Towards tensor-based methods for the numerical approximation of the Perron-Frobenius and Koopman operator

    Full text link
    The global behavior of dynamical systems can be studied by analyzing the eigenvalues and corresponding eigenfunctions of linear operators associated with the system. Two important operators which are frequently used to gain insight into the system's behavior are the Perron-Frobenius operator and the Koopman operator. Due to the curse of dimensionality, computing the eigenfunctions of high-dimensional systems is in general infeasible. We will propose a tensor-based reformulation of two numerical methods for computing finite-dimensional approximations of the aforementioned infinite-dimensional operators, namely Ulam's method and Extended Dynamic Mode Decomposition (EDMD). The aim of the tensor formulation is to approximate the eigenfunctions by low-rank tensors, potentially resulting in a significant reduction of the time and memory required to solve the resulting eigenvalue problems, provided that such a low-rank tensor decomposition exists. Typically, not all variables of a high-dimensional dynamical system contribute equally to the system's behavior, often the dynamics can be decomposed into slow and fast processes, which is also reflected in the eigenfunctions. Thus, the weak coupling between different variables might be approximated by low-rank tensor cores. We will illustrate the efficiency of the tensor-based formulation of Ulam's method and EDMD using simple stochastic differential equations

    Real-Space Mesh Techniques in Density Functional Theory

    Full text link
    This review discusses progress in efficient solvers which have as their foundation a representation in real space, either through finite-difference or finite-element formulations. The relationship of real-space approaches to linear-scaling electrostatics and electronic structure methods is first discussed. Then the basic aspects of real-space representations are presented. Multigrid techniques for solving the discretized problems are covered; these numerical schemes allow for highly efficient solution of the grid-based equations. Applications to problems in electrostatics are discussed, in particular numerical solutions of Poisson and Poisson-Boltzmann equations. Next, methods for solving self-consistent eigenvalue problems in real space are presented; these techniques have been extensively applied to solutions of the Hartree-Fock and Kohn-Sham equations of electronic structure, and to eigenvalue problems arising in semiconductor and polymer physics. Finally, real-space methods have found recent application in computations of optical response and excited states in time-dependent density functional theory, and these computational developments are summarized. Multiscale solvers are competitive with the most efficient available plane-wave techniques in terms of the number of self-consistency steps required to reach the ground state, and they require less work in each self-consistency update on a uniform grid. Besides excellent efficiencies, the decided advantages of the real-space multiscale approach are 1) the near-locality of each function update, 2) the ability to handle global eigenfunction constraints and potential updates on coarse levels, and 3) the ability to incorporate adaptive local mesh refinements without loss of optimal multigrid efficiencies.Comment: 70 pages, 11 figures. To be published in Reviews of Modern Physic

    Adaptive Finite Element Approximations for Kohn-Sham Models

    Full text link
    The Kohn-Sham equation is a powerful, widely used approach for computation of ground state electronic energies and densities in chemistry, materials science, biology, and nanosciences. In this paper, we study the adaptive finite element approximations for the Kohn-Sham model. Based on the residual type a posteriori error estimators proposed in this paper, we introduce an adaptive finite element algorithm with a quite general marking strategy and prove the convergence of the adaptive finite element approximations. Using D{\" o}rfler's marking strategy, we then get the convergence rate and quasi-optimal complexity. We also carry out several typical numerical experiments that not only support our theory,but also show the robustness and efficiency of the adaptive finite element computations in electronic structure calculations.Comment: 38pages, 7figure

    Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency

    Get PDF
    We propose a new normalized Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem based on an energy inner product that depends on time through the density of the flow itself. The gradient flow is well-defined and converges to an eigenfunction. For ground states we can quantify the convergence speed as exponentially fast where the rate depends on spectral gaps of a linearized operator. The forward Euler time discretization of the flow yields a numerical method which generalizes the inverse iteration for the nonlinear eigenvalue problem. For sufficiently small time steps, the method reduces the energy in every step and converges globally in H1H^1 to an eigenfunction. In particular, for any nonnegative starting value, the ground state is obtained. A series of numerical experiments demonstrates the computational efficiency of the method and its competitiveness with established discretizations arising from other gradient flows for this problem
    • …
    corecore