309 research outputs found

    Uncertainty-aware State Space Transformer for Egocentric 3D Hand Trajectory Forecasting

    Full text link
    Hand trajectory forecasting from egocentric views is crucial for enabling a prompt understanding of human intentions when interacting with AR/VR systems. However, existing methods handle this problem in a 2D image space which is inadequate for 3D real-world applications. In this paper, we set up an egocentric 3D hand trajectory forecasting task that aims to predict hand trajectories in a 3D space from early observed RGB videos in a first-person view. To fulfill this goal, we propose an uncertainty-aware state space Transformer (USST) that takes the merits of the attention mechanism and aleatoric uncertainty within the framework of the classical state-space model. The model can be further enhanced by the velocity constraint and visual prompt tuning (VPT) on large vision transformers. Moreover, we develop an annotation workflow to collect 3D hand trajectories with high quality. Experimental results on H2O and EgoPAT3D datasets demonstrate the superiority of USST for both 2D and 3D trajectory forecasting. The code and datasets are publicly released: https://actionlab-cv.github.io/EgoHandTrajPred.Comment: ICCV 2023 Accepted (Camera Ready

    Embodied Scene-aware Human Pose Estimation

    Full text link
    We propose embodied scene-aware human pose estimation where we estimate 3D poses based on a simulated agent's proprioception and scene awareness, along with external third-person observations. Unlike prior methods that often resort to multistage optimization, non-causal inference, and complex contact modeling to estimate human pose and human scene interactions, our method is one stage, causal, and recovers global 3D human poses in a simulated environment. Since 2D third-person observations are coupled with the camera pose, we propose to disentangle the camera pose and use a multi-step projection gradient defined in the global coordinate frame as the movement cue for our embodied agent. Leveraging a physics simulation and prescanned scenes (e.g., 3D mesh), we simulate our agent in everyday environments (libraries, offices, bedrooms, etc.) and equip our agent with environmental sensors to intelligently navigate and interact with scene geometries. Our method also relies only on 2D keypoints and can be trained on synthetic datasets derived from popular human motion databases. To evaluate, we use the popular H36M and PROX datasets and, for the first time, achieve a success rate of 96.7% on the challenging PROX dataset without ever using PROX motion sequences for training.Comment: Project website: https://embodiedscene.github.io/embodiedpose/ Zhengyi Luo and Shun Iwase contributed equall
    • …
    corecore