51 research outputs found

    On the performance of edge coloring algorithms for cubic graphs

    Get PDF
    This thesis visits the forefront of algorithmic research on edge coloring of cubic graphs. We select a set of algorithms that are among the asymptotically fastest known today. Each algorithm has exponential time complexity, owing to the NP-completeness of edge coloring, but their space complexities differ greatly. They are implemented in a popular high-level programming language to compare their performance on a set of real instances. We also explore ways to parallelize each of the algorithms and discuss what benefits and detriments those implementations hold

    Sliding window temporal graph coloring

    Get PDF
    Graph coloring is one of the most famous computational problems with applications in a wide range of areas such as planning and scheduling, resource allocation, and pattern matching. So far coloring problems are mostly studied on static graphs, which often stand in contrast to practice where data is inherently dynamic. A temporal graph has an edge set that changes over time. We present a natural temporal extension of the classical graph coloring problem. Given a temporal graph and integers k and Δ, we ask for a coloring sequence with at most k colors for each vertex such that in every time window of Δ consecutive time steps, in which an edge is present, this edge is properly colored at least once. We thoroughly investigate the computational complexity of this temporal coloring problem. More specifically, we prove strong computational hardness results, complemented by efficient exact and approximation algorithms

    The world of hereditary graph classes viewed through Truemper configurations

    Get PDF
    In 1982 Truemper gave a theorem that characterizes graphs whose edges can be labeled so that all chordless cycles have prescribed parities. The characterization states that this can be done for a graph G if and only if it can be done for all induced subgraphs of G that are of few speci c types, that we will call Truemper con gurations. Truemper was originally motivated by the problem of obtaining a co-NP characterization of bipartite graphs that are signable to be balanced (i.e. bipartite graphs whose node-node incidence matrices are balanceable matrices). The con gurations that Truemper identi ed in his theorem ended up playing a key role in understanding the structure of several seemingly diverse classes of objects, such as regular matroids, balanceable matrices and perfect graphs. In this survey we view all these classes, and more, through the excluded Truemper con gurations, focusing on the algorithmic consequences, trying to understand what structurally enables e cient recognition and optimization algorithms

    Novel procedures for graph edge-colouring

    Get PDF
    Orientador: Dr. Renato CarmoCoorientador: Dr. André Luiz Pires GuedesTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 05/12/2018Inclui referências e índiceÁrea de concentração: Ciência da ComputaçãoResumo: O índice cromático de um grafo G é o menor número de cores necessário para colorir as arestas de G de modo que não haja duas arestas adjacentes recebendo a mesma cor. Pelo célebre Teorema de Vizing, o índice cromático de qualquer grafo simples G ou é seu grau máximo , ou é ? + 1, em cujo caso G é dito Classe 1 ou Classe 2, respectivamente. Computar uma coloração de arestas ótima de um grafo ou simplesmente determinar seu índice cromático são problemas NP-difíceis importantes que aparecem em aplicações notáveis, como redes de sensores, redes ópticas, controle de produção, e jogos. Neste trabalho, nós apresentamos novos procedimentos de tempo polinomial para colorir otimamente as arestas de grafos pertences a alguns conjuntos grandes. Por exemplo, seja X a classe dos grafos cujos maiorais (vértices de grau ?) possuem soma local de graus no máximo ?2 ?? (entendemos por 'soma local de graus' de um vértice x a soma dos graus dos vizinhos de x). Nós mostramos que quase todo grafo está em X e, estendendo o procedimento de recoloração que Vizing usou na prova para seu teorema, mostramos que todo grafo em X é Classe 1. Nós também conseguimos resultados em outras classes de grafos, como os grafos-junção, os grafos arco-circulares, e os prismas complementares. Como um exemplo, nós mostramos que um prisma complementar só pode ser Classe 2 se for um grafo regular distinto do K2. No que diz respeito aos grafos-junção, nós mostramos que se G1 e G2 são grafos disjuntos tais que |V(G1)| _ |V(G2)| e ?(G1) _ ?(G2), e se os maiorais de G1 induzem um grafo acíclico, então o grafo-junção G1 ?G2 é Classe 1. Além desses resultados em coloração de arestas, apresentamos resultados parciais em coloração total de grafos-junção, de grafos arco-circulares, e de grafos cobipartidos, bem como discutimos um procedimento de recoloração para coloração total. Palavras-chave: Coloração de grafos e hipergrafos (MSC 05C15). Algoritmos de grafos (MSC 05C85). Teoria dos grafos em relação à Ciência da Computação (MSC 68R10). Graus de vértices (MSC 05C07). Operações de grafos (MSC 05C76).Abstract: The chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing's Theorem, the chromatic index of any simple graph G is either its maximum degree ? or it is ? + 1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are important NP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ?) have local degree sum at most ?2 ? ? (by 'local degree sum' of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing's in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)| _ |V(G2)| and ?(G1) _ ?(G2), and if the majors of G1 induce an acyclic graph, then the join graph G1 ?G2 is Class 1. Besides these results on edge-colouring, we present partial results on total colouring join graphs, cobipartite graphs, and circular-arc graphs, as well as a discussion on a recolouring procedure for total colouring. Keywords: Colouring of graphs and hypergraphs (MSC 05C15). Graph algorithms (MSC 05C85). Graph theory in relation to Computer Science (MSC 68R10). Vertex degrees (MSC 05C07). Graph operations (MSC 05C76)

    Acta Universitatis Sapientiae - Informatica 2015

    Get PDF

    16th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2018, June 18-20, 2018, Malmö University, Malmö, Sweden

    Get PDF
    corecore