154 research outputs found

    Efficiently Storing Well-Composed Polyhedral Complexes Computed Over 3D Binary Images

    Get PDF
    A 3D binary image I can be naturally represented by a combinatorial-algebraic structure called cubical complex and denoted by Q(I ), whose basic building blocks are vertices, edges, square faces and cubes. In Gonzalez-Diaz et al. (Discret Appl Math 183:59–77, 2015), we presented a method to “locally repair” Q(I ) to obtain a polyhedral complex P(I ) (whose basic building blocks are vertices, edges, specific polygons and polyhedra), homotopy equivalent to Q(I ), satisfying that its boundary surface is a 2D manifold. P(I ) is called a well-composed polyhedral complex over the picture I . Besides, we developed a new codification system for P(I ), encoding geometric information of the cells of P(I ) under the form of a 3D grayscale image, and the boundary face relations of the cells of P(I ) under the form of a set of structuring elements. In this paper, we build upon (Gonzalez-Diaz et al. 2015) and prove that, to retrieve topological and geometric information of P(I ), it is enough to store just one 3D point per polyhedron and hence neither grayscale image nor set of structuring elements are needed. From this “minimal” codification of P(I ), we finally present a method to compute the 2-cells in the boundary surface of P(I ).Ministerio de Economía y Competitividad MTM2015-67072-

    One More Step Towards Well-Composedness of Cell Complexes over nD Pictures

    Get PDF
    An nD pure regular cell complex K is weakly well-composed (wWC) if, for each vertex v of K, the set of n-cells incident to v is face-connected. In previous work we proved that if an nD picture I is digitally well composed (DWC) then the cubical complex Q(I) associated to I is wWC. If I is not DWC, we proposed a combinatorial algorithm to “locally repair” Q(I) obtaining an nD pure simplicial complex PS(I) homotopy equivalent to Q(I) which is always wWC. In this paper we give a combinatorial procedure to compute a simplicial complex PS(¯I) which decomposes the complement space of |PS(I)| and prove that PS(¯I) is also wWC. This paper means one more step on the way to our ultimate goal: to prove that the nD repaired complex is continuously well-composed (CWC), that is, the boundary of its continuous analog is an (n − 1)- manifold.Ministerio de Economía y Competitividad MTM2015-67072-

    The Topology ToolKit

    Full text link
    This system paper presents the Topology ToolKit (TTK), a software platform designed for topological data analysis in scientific visualization. TTK provides a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependence-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website

    A 3d geoscience information system framework

    Get PDF
    Two-dimensional geographical information systems are extensively used in the geosciences to create and analyse maps. However, these systems are unable to represent the Earth's subsurface in three spatial dimensions. The objective of this thesis is to overcome this deficiency, to provide a general framework for a 3d geoscience information system (GIS), and to contribute to the public discussion about the development of an infrastructure for geological observation data, geomodels, and geoservices. Following the objective, the requirements for a 3d GIS are analysed. According to the requirements, new geologically sensible query functionality for geometrical, topological and geological properties has been developed and the integration of 3d geological modeling and data management system components in a generic framework has been accomplished. The 3d geoscience information system framework presented here is characterized by the following features: - Storage of geological observation data and geomodels in a XML-database server. According to a new data model, geological observation data can be referenced by a set of geomodels. - Functionality for querying observation data and 3d geomodels based on their 3d geometrical, topological, material, and geological properties were developed and implemented as plug-in for a 3d geomodeling user application. - For database queries, the standard XML query language has been extended with 3d spatial operators. The spatial database query operations are computed using a XML application server which has been developed for this specific purpose. This technology allows sophisticated 3d spatial and geological database queries. Using the developed methods, queries can be answered like: "Select all sandstone horizons which are intersected by the set of faults F". This request contains a topological and a geological material parameter. The combination of queries with other GIS methods, like visual and statistical analysis, allows geoscience investigations in a novel 3d GIS environment. More generally, a 3d GIS enables geologists to read and understand a 3d digital geomodel analogously as they read a conventional 2d geological map
    • 

    corecore