7,210 research outputs found

    On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes

    Get PDF
    In this paper, a comparative study is done on the time and frequency domain tuning strategies for fractional order (FO) PID controllers to handle higher order processes. A new fractional order template for reduced parameter modeling of stable minimum/non-minimum phase higher order processes is introduced and its advantage in frequency domain tuning of FOPID controllers is also presented. The time domain optimal tuning of FOPID controllers have also been carried out to handle these higher order processes by performing optimization with various integral performance indices. The paper highlights on the practical control system implementation issues like flexibility of online autotuning, reduced control signal and actuator size, capability of measurement noise filtration, load disturbance suppression, robustness against parameter uncertainties etc. in light of the above tuning methodologies.Comment: 27 pages, 10 figure

    Robust Secure Transmission in MISO Channels Based on Worst-Case Optimization

    Full text link
    This paper studies robust transmission schemes for multiple-input single-output (MISO) wiretap channels. Both the cases of direct transmission and cooperative jamming with a helper are investigated with imperfect channel state information (CSI) for the eavesdropper links. Robust transmit covariance matrices are obtained based on worst-case secrecy rate maximization, under both individual and global power constraints. For the case of an individual power constraint, we show that the non-convex maximin optimization problem can be transformed into a quasiconvex problem that can be efficiently solved with existing methods. For a global power constraint, the joint optimization of the transmit covariance matrices and power allocation between the source and the helper is studied via geometric programming. We also study the robust wiretap transmission problem for the case with a quality-of-service constraint at the legitimate receiver. Numerical results show the advantage of the proposed robust design. In particular, for the global power constraint scenario, although cooperative jamming is not necessary for optimal transmission with perfect eavesdropper's CSI, we show that robust jamming support can increase the worst-case secrecy rate and lower the signal to interference-plus-noise ratio at Eve in the presence of channel mismatches between the transmitters and the eavesdropper.Comment: 28 pages, 5 figure

    Data Driven Surrogate Based Optimization in the Problem Solving Environment WBCSim

    Get PDF
    Large scale, multidisciplinary, engineering designs are always difficult due to the complexity and dimensionality of these problems. Direct coupling between the analysis codes and the optimization routines can be prohibitively time consuming due to the complexity of the underlying simulation codes. One way of tackling this problem is by constructing computationally cheap(er) approximations of the expensive simulations, that mimic the behavior of the simulation model as closely as possible. This paper presents a data driven, surrogate based optimization algorithm that uses a trust region based sequential approximate optimization (SAO) framework and a statistical sampling approach based on design of experiment (DOE) arrays. The algorithm is implemented using techniques from two packages—SURFPACK and SHEPPACK that provide a collection of approximation algorithms to build the surrogates and three different DOE techniques—full factorial (FF), Latin hypercube sampling (LHS), and central composite design (CCD)—are used to train the surrogates. The results are compared with the optimization results obtained by directly coupling an optimizer with the simulation code. The biggest concern in using the SAO framework based on statistical sampling is the generation of the required database. As the number of design variables grows, the computational cost of generating the required database grows rapidly. A data driven approach is proposed to tackle this situation, where the trick is to run the expensive simulation if and only if a nearby data point does not exist in the cumulatively growing database. Over time the database matures and is enriched as more and more optimizations are performed. Results show that the proposed methodology dramatically reduces the total number of calls to the expensive simulation runs during the optimization process

    Oracle-Based Robust Optimization via Online Learning

    Full text link
    Robust optimization is a common framework in optimization under uncertainty when the problem parameters are not known, but it is rather known that the parameters belong to some given uncertainty set. In the robust optimization framework the problem solved is a min-max problem where a solution is judged according to its performance on the worst possible realization of the parameters. In many cases, a straightforward solution of the robust optimization problem of a certain type requires solving an optimization problem of a more complicated type, and in some cases even NP-hard. For example, solving a robust conic quadratic program, such as those arising in robust SVM, ellipsoidal uncertainty leads in general to a semidefinite program. In this paper we develop a method for approximately solving a robust optimization problem using tools from online convex optimization, where in every stage a standard (non-robust) optimization program is solved. Our algorithms find an approximate robust solution using a number of calls to an oracle that solves the original (non-robust) problem that is inversely proportional to the square of the target accuracy

    Robust Transmission in Downlink Multiuser MISO Systems: A Rate-Splitting Approach

    Get PDF
    We consider a downlink multiuser MISO system with bounded errors in the Channel State Information at the Transmitter (CSIT). We first look at the robust design problem of achieving max-min fairness amongst users (in the worst-case sense). Contrary to the conventional approach adopted in literature, we propose a rather unorthodox design based on a Rate-Splitting (RS) strategy. Each user's message is split into two parts, a common part and a private part. All common parts are packed into one super common message encoded using a public codebook, while private parts are independently encoded. The resulting symbol streams are linearly precoded and simultaneously transmitted, and each receiver retrieves its intended message by decoding both the common stream and its corresponding private stream. For CSIT uncertainty regions that scale with SNR (e.g. by scaling the number of feedback bits), we prove that a RS-based design achieves higher max-min (symmetric) Degrees of Freedom (DoF) compared to conventional designs (NoRS). For the special case of non-scaling CSIT (e.g. fixed number of feedback bits), and contrary to NoRS, RS can achieve a non-saturating max-min rate. We propose a robust algorithm based on the cutting-set method coupled with the Weighted Minimum Mean Square Error (WMMSE) approach, and we demonstrate its performance gains over state-of-the art designs. Finally, we extend the RS strategy to address the Quality of Service (QoS) constrained power minimization problem, and we demonstrate significant gains over NoRS-based designs.Comment: Accepted for publication in IEEE Transactions on Signal Processin

    A Multi-Grid Iterative Method for Photoacoustic Tomography

    Get PDF
    Inspired by the recent advances on minimizing nonsmooth or bound-constrained convex functions on models using varying degrees of fidelity, we propose a line search multigrid (MG) method for full-wave iterative image reconstruction in photoacoustic tomography (PAT) in heterogeneous media. To compute the search direction at each iteration, we decide between the gradient at the target level, or alternatively an approximate error correction at a coarser level, relying on some predefined criteria. To incorporate absorption and dispersion, we derive the analytical adjoint directly from the first-order acoustic wave system. The effectiveness of the proposed method is tested on a total-variation penalized Iterative Shrinkage Thresholding algorithm (ISTA) and its accelerated variant (FISTA), which have been used in many studies of image reconstruction in PAT. The results show the great potential of the proposed method in improving speed of iterative image reconstruction

    On simultaneous diagonalization via congruence of real symmetric matrices

    Full text link
    Simultaneous diagonalization via congruence (SDC) for more than two symmetric matrices has been a long standing problem. So far, the best attempt either relies on the existence of a semidefinite matrix pencil or casts on the complex field. The problem now is resolved without any assumption. We first propose necessary and sufficient conditions for SDC in case that at least one of the matrices is nonsingular. Otherwise, we show that the singular matrices can be decomposed into diagonal blocks such that the SDC of given matrices becomes equivalently the SDC of the sub-matrices. Most importantly, the sub-matrices now contain at least one nonsingular matrix. Applications to simplify some difficult optimization problems with the presence of SDC are mentioned
    • …
    corecore