6,565 research outputs found

    COLAB:A Collaborative Multi-factor Scheduler for Asymmetric Multicore Processors

    Get PDF
    Funding: Partially funded by the UK EPSRC grants Discovery: Pattern Discovery and Program Shaping for Many-core Systems (EP/P020631/1) and ABC: Adaptive Brokerage for Cloud (EP/R010528/1); Royal Academy of Engineering under the Research Fellowship scheme.Increasingly prevalent asymmetric multicore processors (AMP) are necessary for delivering performance in the era of limited power budget and dark silicon. However, the software fails to use them efficiently. OS schedulers, in particular, handle asymmetry only under restricted scenarios. We have efficient symmetric schedulers, efficient asymmetric schedulers for single-threaded workloads, and efficient asymmetric schedulers for single program workloads. What we do not have is a scheduler that can handle all runtime factors affecting AMP for multi-threaded multi-programmed workloads. This paper introduces the first general purpose asymmetry-aware scheduler for multi-threaded multi-programmed workloads. It estimates the performance of each thread on each type of core and identifies communication patterns and bottleneck threads. The scheduler then makes coordinated core assignment and thread selection decisions that still provide each application its fair share of the processor's time. We evaluate our approach using the GEM5 simulator on four distinct big.LITTLE configurations and 26 mixed workloads composed of PARSEC and SPLASH2 benchmarks. Compared to the state-of-the art Linux CFS and AMP-aware schedulers, we demonstrate performance gains of up to 25% and 5% to 15% on average depending on the hardware setup.Postprin

    Fairness-aware scheduling on single-ISA heterogeneous multi-cores

    Get PDF
    Single-ISA heterogeneous multi-cores consisting of small (e.g., in-order) and big (e.g., out-of-order) cores dramatically improve energy- and power-efficiency by scheduling workloads on the most appropriate core type. A significant body of recent work has focused on improving system throughput through scheduling. However, none of the prior work has looked into fairness. Yet, guaranteeing that all threads make equal progress on heterogeneous multi-cores is of utmost importance for both multi-threaded and multi-program workloads to improve performance and quality-of-service. Furthermore, modern operating systems affinitize workloads to cores (pinned scheduling) which dramatically affects fairness on heterogeneous multi-cores. In this paper, we propose fairness-aware scheduling for single-ISA heterogeneous multi-cores, and explore two flavors for doing so. Equal-time scheduling runs each thread or workload on each core type for an equal fraction of the time, whereas equal-progress scheduling strives at getting equal amounts of work done on each core type. Our experimental results demonstrate an average 14% (and up to 25%) performance improvement over pinned scheduling through fairness-aware scheduling for homogeneous multi-threaded workloads; equal-progress scheduling improves performance by 32% on average for heterogeneous multi-threaded workloads. Further, we report dramatic improvements in fairness over prior scheduling proposals for multi-program workloads, while achieving system throughput comparable to throughput-optimized scheduling, and an average 21% improvement in throughput over pinned scheduling

    Load sharing for optimistic parallel simulations on multicore machines

    Get PDF
    Parallel Discrete Event Simulation (PDES) is based on the partitioning of the simulation model into distinct Logical Processes (LPs), each one modeling a portion of the entire system, which are allowed to execute simulation events concurrently. This allows exploiting parallel computing architectures to speedup model execution, and to make very large models tractable. In this article we cope with the optimistic approach to PDES, where LPs are allowed to concurrently process their events in a speculative fashion, and rollback/ recovery techniques are used to guarantee state consistency in case of causality violations along the speculative execution path. Particularly, we present an innovative load sharing approach targeted at optimizing resource usage for fruitful simulation work when running an optimistic PDES environment on top of multi-processor/multi-core machines. Beyond providing the load sharing model, we also define a load sharing oriented architectural scheme, based on a symmetric multi-threaded organization of the simulation platform. Finally, we present a real implementation of the load sharing architecture within the open source ROme OpTimistic Simulator (ROOT-Sim) package. Experimental data for an assessment of both viability and effectiveness of our proposal are presented as well. Copyright is held by author/owner(s)

    The Exoplanet Population Observation Simulator. II -- Population Synthesis in the Era of Kepler

    Get PDF
    The collection of planetary system properties derived from large surveys such as Kepler provides critical constraints on planet formation and evolution. These constraints can only be applied to planet formation models, however, if the observational biases and selection effects are properly accounted for. Here we show how epos, the Exoplanet Population Observation Simulator, can be used to constrain planet formation models by comparing the Bern planet population synthesis models to the Kepler exoplanetary systems. We compile a series of diagnostics, based on occurrence rates of different classes of planets and the architectures of multi-planet systems, that can be used as benchmarks for future and current modeling efforts. Overall, we find that a model with 100 seed planetary cores per protoplanetary disk provides a reasonable match to most diagnostics. Based on these diagnostics we identify physical properties and processes that would result in the Bern model more closely matching the known planetary systems. These are: moving the planet trap at the inner disk edge outward; increasing the formation efficiency of mini-Neptunes; and reducing the fraction of stars that form observable planets. We conclude with an outlook on the composition of planets in the habitable zone, and highlight that the majority of simulated planets smaller than 1.7 Earth radii have substantial hydrogen atmospheres. The software used in this paper is available online for public scrutiny at https://github.com/GijsMulders/eposComment: Accepted in Ap

    A load-sharing architecture for high performance optimistic simulations on multi-core machines

    Get PDF
    In Parallel Discrete Event Simulation (PDES), the simulation model is partitioned into a set of distinct Logical Processes (LPs) which are allowed to concurrently execute simulation events. In this work we present an innovative approach to load-sharing on multi-core/multiprocessor machines, targeted at the optimistic PDES paradigm, where LPs are speculatively allowed to process simulation events with no preventive verification of causal consistency, and actual consistency violations (if any) are recovered via rollback techniques. In our approach, each simulation kernel instance, in charge of hosting and executing a specific set of LPs, runs a set of worker threads, which can be dynamically activated/deactivated on the basis of a distributed algorithm. The latter relies in turn on an analytical model that provides indications on how to reassign processor/core usage across the kernels in order to handle the simulation workload as efficiently as possible. We also present a real implementation of our load-sharing architecture within the ROme OpTimistic Simulator (ROOT-Sim), namely an open-source C-based simulation platform implemented according to the PDES paradigm and the optimistic synchronization approach. Experimental results for an assessment of the validity of our proposal are presented as well

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Offline and online power aware resource allocation algorithms with migration and delay constraints

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In order to handle advanced mobile broadband services and Internet of Things (IoT), future Internet and 5G networks are expected to leverage the use of network virtualization, be much faster, have greater capacities, provide lower latencies, and significantly be power efficient than current mobile technologies. Therefore, this paper proposes three power aware algorithms for offline, online, and migration applications, solving the resource allocation problem within the frameworks of network function virtualization (NFV) environments in fractions of a second. The proposed algorithms target minimizing the total costs and power consumptions in the physical network through sufficiently allocating the least physical resources to host the demands of the virtual network services, and put into saving mode all other not utilized physical components. Simulations and evaluations of the offline algorithm compared to the state-of-art resulted on lower total costs by 32%. In addition to that, the online algorithm was tested through four different experiments, and the results argued that the overall power consumption of the physical network was highly dependent on the demands’ lifetimes, and the strictness of the required end-to-end delay. Regarding migrations during online, the results concluded that the proposed algorithms would be most effective when applied for maintenance and emergency conditions.Peer ReviewedPreprin
    • …
    corecore