4,868 research outputs found

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    A 100-MIPS GaAs asynchronous microprocessor

    Get PDF
    The authors describe how they ported an asynchronous microprocessor previously implemented in CMOS to gallium arsenide, using a technology-independent asynchronous design technique. They introduce new circuits including a sense-amplifier, a completion detection circuit, and a general circuit structure for operators specified by production rules. The authors used and tested these circuits in a variety of designs

    Using FPGA for visuo-motor control with a silicon retina and a humanoid robot

    Get PDF
    The address-event representation (AER) is a neuromorphic communication protocol for transferring asynchronous events between VLSI chips. The event information is transferred using a high speed digital parallel bus. This paper present an experiment based on AER for visual sensing, processing and finally actuating a robot. The AER output of a silicon retina is processed by an AER filter implemented into a FPGA to produce a mimicking behaviour in a humanoid robot (The RoboSapiens V2). We have implemented the visual filter into the Spartan II FPGA of the USB-AER platform and the Central Pattern Generator (CPG) into the Spartan 3 FPGA of the AER-Robot platform, both developed by authors.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    Technology Mapping for Circuit Optimization Using Content-Addressable Memory

    Get PDF
    The growing complexity of Field Programmable Gate Arrays (FPGA's) is leading to architectures with high input cardinality look-up tables (LUT's). This thesis describes a methodology for area-minimizing technology mapping for combinational logic, specifically designed for such FPGA architectures. This methodology, called LURU, leverages the parallel search capabilities of Content-Addressable Memories (CAM's) to outperform traditional mapping algorithms in both execution time and quality of results. The LURU algorithm is fundamentally different from other techniques for technology mapping in that LURU uses textual string representations of circuit topology in order to efficiently store and search for circuit patterns in a CAM. A circuit is mapped to the target LUT technology using both exact and inexact string matching techniques. Common subcircuit expressions (CSE's) are also identified and used for architectural optimization---a small set of CSE's is shown to effectively cover an average of 96% of the test circuits. LURU was tested with the ISCAS'85 suite of combinational benchmark circuits and compared with the mapping algorithms FlowMap and CutMap. The area reduction shown by LURU is, on average, 20% better compared to FlowMap and CutMap. The asymptotic runtime complexity of LURU is shown to be better than that of both FlowMap and CutMap

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER
    corecore