55,019 research outputs found

    Lifelong Metric Learning

    Full text link
    The state-of-the-art online learning approaches are only capable of learning the metric for predefined tasks. In this paper, we consider lifelong learning problem to mimic "human learning", i.e., endowing a new capability to the learned metric for a new task from new online samples and incorporating previous experiences and knowledge. Therefore, we propose a new metric learning framework: lifelong metric learning (LML), which only utilizes the data of the new task to train the metric model while preserving the original capabilities. More specifically, the proposed LML maintains a common subspace for all learned metrics, named lifelong dictionary, transfers knowledge from the common subspace to each new metric task with task-specific idiosyncrasy, and redefines the common subspace over time to maximize performance across all metric tasks. For model optimization, we apply online passive aggressive optimization algorithm to solve the proposed LML framework, where the lifelong dictionary and task-specific partition are optimized alternatively and consecutively. Finally, we evaluate our approach by analyzing several multi-task metric learning datasets. Extensive experimental results demonstrate effectiveness and efficiency of the proposed framework.Comment: 10 pages, 6 figure

    Metric and Kernel Learning using a Linear Transformation

    Full text link
    Metric and kernel learning are important in several machine learning applications. However, most existing metric learning algorithms are limited to learning metrics over low-dimensional data, while existing kernel learning algorithms are often limited to the transductive setting and do not generalize to new data points. In this paper, we study metric learning as a problem of learning a linear transformation of the input data. We show that for high-dimensional data, a particular framework for learning a linear transformation of the data based on the LogDet divergence can be efficiently kernelized to learn a metric (or equivalently, a kernel function) over an arbitrarily high dimensional space. We further demonstrate that a wide class of convex loss functions for learning linear transformations can similarly be kernelized, thereby considerably expanding the potential applications of metric learning. We demonstrate our learning approach by applying it to large-scale real world problems in computer vision and text mining

    Active Metric Learning from Relative Comparisons

    Full text link
    This work focuses on active learning of distance metrics from relative comparison information. A relative comparison specifies, for a data point triplet (xi,xj,xk)(x_i,x_j,x_k), that instance xix_i is more similar to xjx_j than to xkx_k. Such constraints, when available, have been shown to be useful toward defining appropriate distance metrics. In real-world applications, acquiring constraints often require considerable human effort. This motivates us to study how to select and query the most useful relative comparisons to achieve effective metric learning with minimum user effort. Given an underlying class concept that is employed by the user to provide such constraints, we present an information-theoretic criterion that selects the triplet whose answer leads to the highest expected gain in information about the classes of a set of examples. Directly applying the proposed criterion requires examining O(n3)O(n^3) triplets with nn instances, which is prohibitive even for datasets of moderate size. We show that a randomized selection strategy can be used to reduce the selection pool from O(n3)O(n^3) to O(n)O(n), allowing us to scale up to larger-size problems. Experiments show that the proposed method consistently outperforms two baseline policies

    Graph R-CNN for Scene Graph Generation

    Full text link
    We propose a novel scene graph generation model called Graph R-CNN, that is both effective and efficient at detecting objects and their relations in images. Our model contains a Relation Proposal Network (RePN) that efficiently deals with the quadratic number of potential relations between objects in an image. We also propose an attentional Graph Convolutional Network (aGCN) that effectively captures contextual information between objects and relations. Finally, we introduce a new evaluation metric that is more holistic and realistic than existing metrics. We report state-of-the-art performance on scene graph generation as evaluated using both existing and our proposed metrics.Comment: 16 pages, ECCV 2018 camera read

    On Clustering on Graphs with Multiple Edge Types

    Full text link
    We study clustering on graphs with multiple edge types. Our main motivation is that similarities between objects can be measured in many different metrics. For instance similarity between two papers can be based on common authors, where they are published, keyword similarity, citations, etc. As such, graphs with multiple edges is a more accurate model to describe similarities between objects. Each edge/metric provides only partial information about the data; recovering full information requires aggregation of all the similarity metrics. Clustering becomes much more challenging in this context, since in addition to the difficulties of the traditional clustering problem, we have to deal with a space of clusterings. We generalize the concept of clustering in single-edge graphs to multi-edged graphs and investigate problems such as: Can we find a clustering that remains good, even if we change the relative weights of metrics? How can we describe the space of clusterings efficiently? Can we find unexpected clusterings (a good clustering that is distant from all given clusterings)? If given the ground-truth clustering, can we recover how the weights for edge types were aggregated? %In this paper, we discuss these problems and the underlying algorithmic challenges and propose some solutions. We also present two case studies: one based on papers on Arxiv and one based on CIA World Factbook

    Creating Scalable and Interactive Web Applications Using High Performance Latent Variable Models

    Full text link
    In this project we outline a modularized, scalable system for comparing Amazon products in an interactive and informative way using efficient latent variable models and dynamic visualization. We demonstrate how our system can build on the structure and rich review information of Amazon products in order to provide a fast, multifaceted, and intuitive comparison. By providing a condensed per-topic comparison visualization to the user, we are able to display aggregate information from the entire set of reviews while providing an interface that is at least as compact as the "most helpful reviews" currently displayed by Amazon, yet far more informative

    A Kernel Classification Framework for Metric Learning

    Full text link
    Learning a distance metric from the given training samples plays a crucial role in many machine learning tasks, and various models and optimization algorithms have been proposed in the past decade. In this paper, we generalize several state-of-the-art metric learning methods, such as large margin nearest neighbor (LMNN) and information theoretic metric learning (ITML), into a kernel classification framework. First, doublets and triplets are constructed from the training samples, and a family of degree-2 polynomial kernel functions are proposed for pairs of doublets or triplets. Then, a kernel classification framework is established, which can not only generalize many popular metric learning methods such as LMNN and ITML, but also suggest new metric learning methods, which can be efficiently implemented, interestingly, by using the standard support vector machine (SVM) solvers. Two novel metric learning methods, namely doublet-SVM and triplet-SVM, are then developed under the proposed framework. Experimental results show that doublet-SVM and triplet-SVM achieve competitive classification accuracies with state-of-the-art metric learning methods such as ITML and LMNN but with significantly less training time.Comment: 11 pages, 7 figure

    Decomposition-Based Transfer Distance Metric Learning for Image Classification

    Full text link
    Distance metric learning (DML) is a critical factor for image analysis and pattern recognition. To learn a robust distance metric for a target task, we need abundant side information (i.e., the similarity/dissimilarity pairwise constraints over the labeled data), which is usually unavailable in practice due to the high labeling cost. This paper considers the transfer learning setting by exploiting the large quantity of side information from certain related, but different source tasks to help with target metric learning (with only a little side information). The state-of-the-art metric learning algorithms usually fail in this setting because the data distributions of the source task and target task are often quite different. We address this problem by assuming that the target distance metric lies in the space spanned by the eigenvectors of the source metrics (or other randomly generated bases). The target metric is represented as a combination of the base metrics, which are computed using the decomposed components of the source metrics (or simply a set of random bases); we call the proposed method, decomposition-based transfer DML (DTDML). In particular, DTDML learns a sparse combination of the base metrics to construct the target metric by forcing the target metric to be close to an integration of the source metrics. The main advantage of the proposed method compared with existing transfer metric learning approaches is that we directly learn the base metric coefficients instead of the target metric. To this end, far fewer variables need to be learned. We therefore obtain more reliable solutions given the limited side information and the optimization tends to be faster. Experiments on the popular handwritten image (digit, letter) classification and challenge natural image annotation tasks demonstrate the effectiveness of the proposed method

    Symmetry-invariant optimization in deep networks

    Full text link
    Recent works have highlighted scale invariance or symmetry that is present in the weight space of a typical deep network and the adverse effect that it has on the Euclidean gradient based stochastic gradient descent optimization. In this work, we show that these and other commonly used deep networks, such as those which use a max-pooling and sub-sampling layer, possess more complex forms of symmetry arising from scaling based reparameterization of the network weights. We then propose two symmetry-invariant gradient based weight updates for stochastic gradient descent based learning. Our empirical evidence based on the MNIST dataset shows that these updates improve the test performance without sacrificing the computational efficiency of the weight updates. We also show the results of training with one of the proposed weight updates on an image segmentation problem.Comment: Submitted to ICLR 2016. arXiv admin note: text overlap with arXiv:1511.0102

    Improving Performance of Self-Organising Maps with Distance Metric Learning Method

    Full text link
    Self-Organising Maps (SOM) are Artificial Neural Networks used in Pattern Recognition tasks. Their major advantage over other architectures is human readability of a model. However, they often gain poorer accuracy. Mostly used metric in SOM is the Euclidean distance, which is not the best approach to some problems. In this paper, we study an impact of the metric change on the SOM's performance in classification problems. In order to change the metric of the SOM we applied a distance metric learning method, so-called 'Large Margin Nearest Neighbour'. It computes the Mahalanobis matrix, which assures small distance between nearest neighbour points from the same class and separation of points belonging to different classes by large margin. Results are presented on several real data sets, containing for example recognition of written digits, spoken letters or faces.Comment: 9 pages, 2 figure
    • …
    corecore