3,491 research outputs found

    A constraint-based framework for configuration

    Get PDF
    The research presented here aims at providing a comprehensive framework for solving configuration problems, based on the Constraint Satisfaction paradigm. This thesis is addressing the two main issues raised by a configuration task: modeling the problem and solving it efficiently. Our approach subsumes previous approaches, incorporating both Simplification and further extension, offering increased representational power and efficiency. Modeling. We advance the idea of local, context independent models for the types of objects in the application domain, and show how the model of an artifact can be built as a composition of local models of the constituent parts. Our modeling technique integrates two mechanisms for dealing with complexity, namely composition and abstraction. Using concepts such as locality, aggregation and inheritance, it offers support and guidance as to the appropriate content and organization of the domain knowledge, thus making knowledge specification and representation less error prone, and knowledge maintenance much easier. There are two specific aspects which make modeling configuration problems challenging: the complexity and heterogeneity of relations that must be expressed, manipulated and maintained, and the dynamic nature of the configuration process. We address these issues by introducing Composite Constraint Satisfaction Problems, a new, nonstandard class of problems which extends the classic Constraint Satisfaction paradigm. Efficiency. For the purpose of the work presented here, we are only interested in providing a guaranteed optimal solution to a configuration problem. To achieve this goal, our research focused on two complementary directions. The first one led to a powerful search algorithm called Maintaining Arc Consistency Extended (MACE). By maintaining arc consistency and taking advantage of the problem structure, MACE turned out to be one of the best general purpose CSP search algorithms to date. The second research direction aimed at reducing the search effort involved in proving the optimality of the proposed solution by making use of information which is specific to individual configuration problems. By adding redundant specialized constraints, the algorithm improves dramatically the lower bound computation. Using abstraction through focusing only on relevant features allows the algorithm to take advantage of context-dependent interchangeability between component instances and discard equivalent solutions, involving the same cost as solutions that have already been explored

    Rapid Modeling, Prototyping, and Generation of Digital Libraries- A Theory-Based Approach

    Get PDF
    Despite some development in the area of DL architectures and systems, there is still little support for the complete life cycle of DL development, including requirements gathering, conceptual modeling, rapid prototyping, and code generation and reuse. Even when partially supported, those activities are uncorrelated within the current systems, which can lead to inconsistencies and incompleteness. Moreover, the current few existing approaches are not supported by comprehensive and formal foundations and theories, which brings problems of interoperability and makes it extremely difficult to adapt and tailor systems to specific societal preferences and needs of the target community. In this paper, having the 5S formal theoretical framework as support, we present an architecture and a family of tools that allow rapid modeling, prototyping, and generation of digital libraries. 5S stands for Streams, Structures, Spaces, Scenarios, and Societies and is our formal theory for DLs. 5SL is a domain-specific, declarative language for DL conceptual modeling. 5SGraph is a visual modeling tool that helps designers to model a digital library without knowing the theoretical foundations and the syntactical details of 5SL. Furthermore, 5SGraph maintains semantic constraints specified by a 5S metamodel and enforces these constraints over the instance model to ensure semantic consistency and correctness. 5SGraph also enables component reuse to reduce the time and efforts of designers. 5SLGen is a DL generation tool that takes specifications in 5SL and a set of component pools and generates portions of a running DL system. The outputs of 5SLGen include user interface prototypes, in a generic UI markup language, for validation of services behavior and workflow representations of the running system, generated to support the desired scenarios

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement

    Get PDF
    We present a novel spatiotemporal saliency detection method to estimate salient regions in videos based on the gradient flow field and energy optimization. The proposed gradient flow field incorporates two distinctive features: 1) intra-frame boundary information and 2) inter-frame motion information together for indicating the salient regions. Based on the effective utilization of both intra-frame and inter-frame information in the gradient flow field, our algorithm is robust enough to estimate the object and background in complex scenes with various motion patterns and appearances. Then, we introduce local as well as global contrast saliency measures using the foreground and background information estimated from the gradient flow field. These enhanced contrast saliency cues uniformly highlight an entire object. We further propose a new energy function to encourage the spatiotemporal consistency of the output saliency maps, which is seldom explored in previous video saliency methods. The experimental results show that the proposed algorithm outperforms state-of-the-art video saliency detection methods

    Higher-Level Consistencies: Where, When, and How Much

    Get PDF
    Determining whether or not a Constraint Satisfaction Problem (CSP) has a solution is NP-complete. CSPs are solved by inference (i.e., enforcing consistency), conditioning (i.e., doing search), or, more commonly, by interleaving the two mechanisms. The most common consistency property enforced during search is Generalized Arc Consistency (GAC). In recent years, new algorithms that enforce consistency properties stronger than GAC have been proposed and shown to be necessary to solve difficult problem instances. We frame the question of balancing the cost and the pruning effectiveness of consistency algorithms as the question of determining where, when, and how much of a higher-level consistency to enforce during search. To answer the `where\u27 question, we exploit the topological structure of a problem instance and target high-level consistency where cycle structures appear. To answer the \u27when\u27 question, we propose a simple, reactive, and effective strategy that monitors the performance of backtrack search and triggers a higher-level consistency as search thrashes. Lastly, for the question of `how much,\u27 we monitor the amount of updates caused by propagation and interrupt the process before it reaches a fixpoint. Empirical evaluations on benchmark problems demonstrate the effectiveness of our strategies. Adviser: B.Y. Choueiry and C. Bessier

    Higher-Level Consistencies: Where, When, and How Much

    Get PDF
    Determining whether or not a Constraint Satisfaction Problem (CSP) has a solution is NP-complete. CSPs are solved by inference (i.e., enforcing consistency), conditioning (i.e., doing search), or, more commonly, by interleaving the two mechanisms. The most common consistency property enforced during search is Generalized Arc Consistency (GAC). In recent years, new algorithms that enforce consistency properties stronger than GAC have been proposed and shown to be necessary to solve difficult problem instances. We frame the question of balancing the cost and the pruning effectiveness of consistency algorithms as the question of determining where, when, and how much of a higher-level consistency to enforce during search. To answer the `where\u27 question, we exploit the topological structure of a problem instance and target high-level consistency where cycle structures appear. To answer the \u27when\u27 question, we propose a simple, reactive, and effective strategy that monitors the performance of backtrack search and triggers a higher-level consistency as search thrashes. Lastly, for the question of `how much,\u27 we monitor the amount of updates caused by propagation and interrupt the process before it reaches a fixpoint. Empirical evaluations on benchmark problems demonstrate the effectiveness of our strategies. Adviser: B.Y. Choueiry and C. Bessier
    • …
    corecore