20 research outputs found

    Noise-Resilient Group Testing: Limitations and Constructions

    Full text link
    We study combinatorial group testing schemes for learning dd-sparse Boolean vectors using highly unreliable disjunctive measurements. We consider an adversarial noise model that only limits the number of false observations, and show that any noise-resilient scheme in this model can only approximately reconstruct the sparse vector. On the positive side, we take this barrier to our advantage and show that approximate reconstruction (within a satisfactory degree of approximation) allows us to break the information theoretic lower bound of Ω~(d2logn)\tilde{\Omega}(d^2 \log n) that is known for exact reconstruction of dd-sparse vectors of length nn via non-adaptive measurements, by a multiplicative factor Ω~(d)\tilde{\Omega}(d). Specifically, we give simple randomized constructions of non-adaptive measurement schemes, with m=O(dlogn)m=O(d \log n) measurements, that allow efficient reconstruction of dd-sparse vectors up to O(d)O(d) false positives even in the presence of δm\delta m false positives and O(m/d)O(m/d) false negatives within the measurement outcomes, for any constant δ<1\delta < 1. We show that, information theoretically, none of these parameters can be substantially improved without dramatically affecting the others. Furthermore, we obtain several explicit constructions, in particular one matching the randomized trade-off but using m=O(d1+o(1)logn)m = O(d^{1+o(1)} \log n) measurements. We also obtain explicit constructions that allow fast reconstruction in time \poly(m), which would be sublinear in nn for sufficiently sparse vectors. The main tool used in our construction is the list-decoding view of randomness condensers and extractors.Comment: Full version. A preliminary summary of this work appears (under the same title) in proceedings of the 17th International Symposium on Fundamentals of Computation Theory (FCT 2009

    Efficiently decodable non-adaptive group testing

    Get PDF
    We consider the following "efficiently decodable" non-adaptive group testing problem. There is an unknown string x 2 f0; 1gn [x is an element of set {0,1} superscript n] with at most d ones in it. We are allowed to test any subset S [n] [S subset [n] ]of the indices. The answer to the test tells whether xi = 0 [x subscript i = 0] for all i 2 S [i is an element of S] or not. The objective is to design as few tests as possible (say, t tests) such that x can be identifi ed as fast as possible (say, poly(t)-time). Efficiently decodable non-adaptive group testing has applications in many areas, including data stream algorithms and data forensics. A non-adaptive group testing strategy can be represented by a t x n matrix, which is the stacking of all the characteristic vectors of the tests. It is well-known that if this matrix is d-disjunct, then any test outcome corresponds uniquely to an unknown input string. Furthermore, we know how to construct d-disjunct matrices with t = O(d2 [d superscript 2] log n) efficiently. However, these matrices so far only allow for a "decoding" time of O(nt), which can be exponentially larger than poly(t) for relatively small values of d. This paper presents a randomness efficient construction of d-disjunct matrices with t = O(d2 [d superscript 2] log n) that can be decoded in time poly(d) [function composed of] t log2 t + O(t2) [t log superscript 2 t and O (t superscript 2)]. To the best of our knowledge, this is the first result that achieves an efficient decoding time and matches the best known O(d2 log n) [O (d superscript 2 log n)] bound on the number of tests. We also derandomize the construction, which results in a polynomial time deterministic construction of such matrices when d = O(log n= log log n). A crucial building block in our construction is the notion of (d,l)-list disjunct matrices, which represent the more general "list group testing" problem whose goal is to output less than d + l positions in x, including all the (at most d) positions that have a one in them. List disjunct matrices turn out to be interesting objects in their own right and were also considered independently by [Cheraghchi, FCT 2009]. We present connections between list disjunct matrices, expanders, dispersers and disjunct matrices. List disjunct matrices have applications in constructing (d,l)- sparsity separator structures [Ganguly, ISAAC 2008] and in constructing tolerant testers for Reed-Solomon codes in the data stream model. 1 IntroductionDavid & Lucile Packard FoundationCenter for Massive Data Algorithmics (MADALGO)National Science Foundation (U.S.) (Grant CCF-0728645)National Science Foundation (U.S.) (Grant CCF-0347565)National Science Foundation (U.S.) (CAREER Award CCF-0844796

    Construction of Almost Disjunct Matrices for Group Testing

    Full text link
    In a \emph{group testing} scheme, a set of tests is designed to identify a small number tt of defective items among a large set (of size NN) of items. In the non-adaptive scenario the set of tests has to be designed in one-shot. In this setting, designing a testing scheme is equivalent to the construction of a \emph{disjunct matrix}, an M×NM \times N matrix where the union of supports of any tt columns does not contain the support of any other column. In principle, one wants to have such a matrix with minimum possible number MM of rows (tests). One of the main ways of constructing disjunct matrices relies on \emph{constant weight error-correcting codes} and their \emph{minimum distance}. In this paper, we consider a relaxed definition of a disjunct matrix known as \emph{almost disjunct matrix}. This concept is also studied under the name of \emph{weakly separated design} in the literature. The relaxed definition allows one to come up with group testing schemes where a close-to-one fraction of all possible sets of defective items are identifiable. Our main contribution is twofold. First, we go beyond the minimum distance analysis and connect the \emph{average distance} of a constant weight code to the parameters of an almost disjunct matrix constructed from it. Our second contribution is to explicitly construct almost disjunct matrices based on our average distance analysis, that have much smaller number of rows than any previous explicit construction of disjunct matrices. The parameters of our construction can be varied to cover a large range of relations for tt and NN.Comment: 15 Page

    Applications of Derandomization Theory in Coding

    Get PDF
    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.]Comment: EPFL Phd Thesi

    A single-photon sampling architecture for solid-state imaging

    Full text link
    Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as LiDAR and positron emission tomography. The demands placed on on-chip readout circuitry imposes stringent trade-offs between fill factor and spatio-temporal resolution, causing many contemporary designs to severely underutilize the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs, thereby also reducing both cost and power consumption. The design relies on a multiplexing technique based on binary interconnection matrices. We provide optimized instances of these matrices for various sensor parameters and give explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization result of a 120x120 photodiode sensor on a 30um x 30um pitch with a 40ps time resolution and an estimated fill factor of approximately 70%, using only 161 TDCs. The design guarantees registration and unique recovery of up to 4 simultaneous photon arrivals using a fast decoding algorithm. In a series of realistic simulations of scintillation events in clinical positron emission tomography the design was able to recover the spatio-temporal location of 98.6% of all photons that caused pixel firings.Comment: 24 pages, 3 figures, 5 table

    GROTESQUE: Noisy Group Testing (Quick and Efficient)

    Full text link
    Group-testing refers to the problem of identifying (with high probability) a (small) subset of DD defectives from a (large) set of NN items via a "small" number of "pooled" tests. For ease of presentation in this work we focus on the regime when D = \cO{N^{1-\gap}} for some \gap > 0. The tests may be noiseless or noisy, and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of literature demonstrates that Θ(Dlog(N))\Theta(D\log(N)) tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexity that is sub-linear in NN have started being investigated (recent work by \cite{GurI:04,IndN:10, NgoP:11} gave some of the first such algorithms). In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (\cO{D\log(N)} in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (\cO{\log(D)}). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires \cO{D\log(D)\log(N)} tests and has a decoding complexity of {O(D(logN+log2D)){\cal O}(D(\log N+\log^{2}D))}. Finally, we present an adaptive algorithm that only requires 2 stages, and for which both the number of tests and the decoding complexity scale as {O(D(logN+log2D)){\cal O}(D(\log N+\log^{2}D))}. For all three settings the probability of error of our algorithms scales as \cO{1/(poly(D)}.Comment: 26 pages, 5 figure

    Symmetric-key Corruption Detection : When XOR-MACs Meet Combinatorial Group Testing

    Get PDF
    We study a class of MACs, which we call corruption detectable MAC, that is able to not only check the integrity of the whole message, but also detect a part of the message that is corrupted. It can be seen as an application of the classical Combinatorial Group Testing (CGT) to message authentication. However, previous work on this application has inherent limitation in communication. We present a novel approach to combine CGT and a class of linear MACs (XOR-MAC) that enables to break this limit. Our proposal, XOR-GTM, has a significantly smaller communication cost than any of the previous ones, keeping the same corruption detection capability. Our numerical examples for storage application show a reduction of communication by a factor of around 15 to 70 compared with previous schemes. XOR-GTM is parallelizable and is as efficient as standard MACs. We prove that XOR-GTM is provably secure under the standard pseudorandomness assumptions

    Noisy Non-Adaptive Group Testing: A (Near-)Definite Defectives Approach

    Get PDF
    The group testing problem consists of determining a small set of defective items from a larger set of items based on a number of possibly-noisy tests, and is relevant in applications such as medical testing, communication protocols, pattern matching, and many more. We study the noisy version of the problem, where the output of each standard noiseless group test is subject to independent noise, corresponding to passing the noiseless result through a binary channel. We introduce a class of algorithms that we refer to as Near-Definite Defectives (NDD), and study bounds on the required number of tests for vanishing error probability under Bernoulli random test designs. In addition, we study algorithm-independent converse results, giving lower bounds on the required number of tests under Bernoulli test designs. Under reverse ZZ-channel noise, the achievable rates and converse results match in a broad range of sparsity regimes, and under ZZ-channel noise, the two match in a narrower range of dense/low-noise regimes. We observe that although these two channels have the same Shannon capacity when viewed as a communication channel, they can behave quite differently when it comes to group testing. Finally, we extend our analysis of these noise models to the symmetric noise model, and show improvements over the best known existing bounds in broad scaling regimes.Comment: Submitted to IEEE Transactions on Information Theor
    corecore