2,128 research outputs found

    Online Tensor Methods for Learning Latent Variable Models

    Get PDF
    We introduce an online tensor decomposition based approach for two latent variable modeling problems namely, (1) community detection, in which we learn the latent communities that the social actors in social networks belong to, and (2) topic modeling, in which we infer hidden topics of text articles. We consider decomposition of moment tensors using stochastic gradient descent. We conduct optimization of multilinear operations in SGD and avoid directly forming the tensors, to save computational and storage costs. We present optimized algorithm in two platforms. Our GPU-based implementation exploits the parallelism of SIMD architectures to allow for maximum speed-up by a careful optimization of storage and data transfer, whereas our CPU-based implementation uses efficient sparse matrix computations and is suitable for large sparse datasets. For the community detection problem, we demonstrate accuracy and computational efficiency on Facebook, Yelp and DBLP datasets, and for the topic modeling problem, we also demonstrate good performance on the New York Times dataset. We compare our results to the state-of-the-art algorithms such as the variational method, and report a gain of accuracy and a gain of several orders of magnitude in the execution time.Comment: JMLR 201

    Second-order Democratic Aggregation

    Full text link
    Aggregated second-order features extracted from deep convolutional networks have been shown to be effective for texture generation, fine-grained recognition, material classification, and scene understanding. In this paper, we study a class of orderless aggregation functions designed to minimize interference or equalize contributions in the context of second-order features and we show that they can be computed just as efficiently as their first-order counterparts and they have favorable properties over aggregation by summation. Another line of work has shown that matrix power normalization after aggregation can significantly improve the generalization of second-order representations. We show that matrix power normalization implicitly equalizes contributions during aggregation thus establishing a connection between matrix normalization techniques and prior work on minimizing interference. Based on the analysis we present {\gamma}-democratic aggregators that interpolate between sum ({\gamma}=1) and democratic pooling ({\gamma}=0) outperforming both on several classification tasks. Moreover, unlike power normalization, the {\gamma}-democratic aggregations can be computed in a low dimensional space by sketching that allows the use of very high-dimensional second-order features. This results in a state-of-the-art performance on several datasets

    Differentiable Programming Tensor Networks

    Full text link
    Differentiable programming is a fresh programming paradigm which composes parameterized algorithmic components and trains them using automatic differentiation (AD). The concept emerges from deep learning but is not only limited to training neural networks. We present theory and practice of programming tensor network algorithms in a fully differentiable way. By formulating the tensor network algorithm as a computation graph, one can compute higher order derivatives of the program accurately and efficiently using AD. We present essential techniques to differentiate through the tensor networks contractions, including stable AD for tensor decomposition and efficient backpropagation through fixed point iterations. As a demonstration, we compute the specific heat of the Ising model directly by taking the second order derivative of the free energy obtained in the tensor renormalization group calculation. Next, we perform gradient based variational optimization of infinite projected entangled pair states for quantum antiferromagnetic Heisenberg model and obtain start-of-the-art variational energy and magnetization with moderate efforts. Differentiable programming removes laborious human efforts in deriving and implementing analytical gradients for tensor network programs, which opens the door to more innovations in tensor network algorithms and applications.Comment: Typos corrected, discussion and refs added; revised version accepted for publication in PRX. Source code available at https://github.com/wangleiphy/tensorgra

    A pseudospectral matrix method for time-dependent tensor fields on a spherical shell

    Full text link
    We construct a pseudospectral method for the solution of time-dependent, non-linear partial differential equations on a three-dimensional spherical shell. The problem we address is the treatment of tensor fields on the sphere. As a test case we consider the evolution of a single black hole in numerical general relativity. A natural strategy would be the expansion in tensor spherical harmonics in spherical coordinates. Instead, we consider the simpler and potentially more efficient possibility of a double Fourier expansion on the sphere for tensors in Cartesian coordinates. As usual for the double Fourier method, we employ a filter to address time-step limitations and certain stability issues. We find that a tensor filter based on spin-weighted spherical harmonics is successful, while two simplified, non-spin-weighted filters do not lead to stable evolutions. The derivatives and the filter are implemented by matrix multiplication for efficiency. A key technical point is the construction of a matrix multiplication method for the spin-weighted spherical harmonic filter. As example for the efficient parallelization of the double Fourier, spin-weighted filter method we discuss an implementation on a GPU, which achieves a speed-up of up to a factor of 20 compared to a single core CPU implementation.Comment: 33 pages, 9 figure

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    A Distributed and Incremental SVD Algorithm for Agglomerative Data Analysis on Large Networks

    Full text link
    In this paper, we show that the SVD of a matrix can be constructed efficiently in a hierarchical approach. Our algorithm is proven to recover the singular values and left singular vectors if the rank of the input matrix AA is known. Further, the hierarchical algorithm can be used to recover the dd largest singular values and left singular vectors with bounded error. We also show that the proposed method is stable with respect to roundoff errors or corruption of the original matrix entries. Numerical experiments validate the proposed algorithms and parallel cost analysis
    • …
    corecore