7,102 research outputs found

    Business optimization through automated signaling design

    Get PDF
    M.Ing. (Engineering Management)Abstract: Railway signaling has become pivotal in the development of railway systems over the years. There is a global demand for upgrading signaling systems for improved efficiency. Upgrading signaling systems requires new signaling designs and modifications to adjacent signaling systems. The purpose of this research is to compare manually produced designs with design automation by covering the framework of multiple aspects of railway signaling designs in view of business optimization using computer drawings, programming software language and management of signaling designs. The research focuses on design automation from the preliminary design stage to the detailed design stage with the intention of investigating and resolving a common project challenge of time management. Various autonomous methods are used to seek improvement on the detailed design phase of re-signaling projects. An analysis on the project’s duration, resources and review cycles is conducted to demonstrate the challenges that are faced during the design of a project. Signaling designs are sophisticated and crucial in an ever-changing railway environment. As a result, there is a demand for efficiency and knowledge within railway signaling to achieve successful completion project target dates. A quantitative approach is used to identify the gaps leading to delays and best practices are applied using a comparative analysis to remediate on any snags that may potentially extend the project duration. The results illustrate that the resources required when automating detailed designs are reduced by two thirds for cable plans and book of circuits and reduced by one third for source documents. Successively, the projects benefit with reduced organizational resources, reduced design durations and reduced design review cycles. This research concludes that software integration of the signaling designs due to the efficiency and innovation of the selected computer drawing software and programming software language such as AutoCAD required less resources for computer drawings that are generated using automation tools compared to computer drawings that are generated manually. The resources required when automating the generation of signaling detailed designs are reduced for cable plans, book of circuits and source documents. This means that the business is optimized by utilizing less resources and subsequently delays are reduced during the design stage

    Maximum risk reduction with a fixed budget in the railway industry

    Get PDF
    Decision-makers in safety-critical industries such as the railways are frequently faced with the complexity of selecting technological, procedural and operational solutions to minimise staff, passengers and third parties’ safety risks. In reality, the options for maximising risk reduction are limited by time and budget constraints as well as performance objectives. Maximising risk reduction is particularly necessary in the times of economic recession where critical services such as those on the UK rail network are not immune to budget cuts. This dilemma is further complicated by statutory frameworks stipulating ‘suitable and sufficient’ risk assessments and constraints such as ‘as low as reasonably practicable’. These significantly influence risk reduction option selection and influence their effective implementation. This thesis provides extensive research in this area and highlights the limitations of widely applied practices. These practices have limited significance on fundamental engineering principles and become impracticable when a constraint such as a fixed budget is applied – this is the current reality of UK rail network operations and risk management. This thesis identifies three main areas of weaknesses to achieving the desired objectives with current risk reduction methods as: Inaccurate, and unclear problem definition; Option evaluation and selection removed from implementation subsequently resulting in misrepresentation of risks and costs; Use of concepts and methods that are not based on fundamental engineering principles, not verifiable and with resultant sub-optimal solutions. Although not solely intended for a single industrial sector, this thesis focuses on guiding the railway risk decision-maker by providing clear categorisation of measures used on railways for risk reduction. This thesis establishes a novel understanding of risk reduction measures’ application limitations and respective strengths. This is achieved by applying ‘key generic engineering principles’ to measures employed for risk reduction. A comprehensive study of their preventive and protective capability in different configurations is presented. Subsequently, the fundamental understanding of risk reduction measures and their railway applications, the ‘cost-of-failure’ (CoF), ‘risk reduction readiness’ (RRR), ‘design-operationalprocedural-technical’ (DOPT) concepts are developed for rational and cost-effective risk reduction. These concepts are shown to be particularly relevant to cases where blind applications of economic and mathematical theories are misleading and detrimental to engineering risk management. The case for successfully implementing this framework for maximum risk reduction within a fixed budget is further strengthened by applying, for the first time in railway risk reduction applications, the dynamic programming technique based on practical railway examples

    Building Information Modeling (BIM) Application for a Section of Bologna’s Red Tramway Line

    Get PDF
    New technologies such as the I-BIM (Infrastructure Building Information Modeling) are radically changing the infrastructure design and construction sector. In this study, the I-BIMapproach has been used for the design of a portion of the future Bologna’s Red Tramway Line. Starting from the topographical survey of the area, a “federated” model was created, aggregating in a single digital environment all the models inherent to the individual disciplines involved. Interference analysis (Clash Detection) between the various disciplines was performed, subject to the preparation of a coordination matrix and the temporal simulation of the worksite phases (BIM4D). The results have shown that the I-BIMapproach represents a powerful tool for optimizing and validating infrastructure design, allowing users to see how the infrastructure integrates and fits into the real 3D environmental context

    System for Investigation of Railway Interfaces (SIRI)

    Get PDF

    Improvements to the calibration of Electronic Distance Measurement Equipment (EDME)

    Get PDF
    As Electronic Distance Measurement Equipment (EDME) technology significantly advances, so too must the way instruments are calibrated. Valuable time and resources are committed to ensuring EDME is calibrated to ensure national standards are met. As such, it is vital that the methods employed for calibration are the most appropriate for the instruments used. In order to assist the profession in this regard, this paper investigates the current EDME calibration baseline designs used in Queensland and analyses the suitability of each in order to devise an alternative baseline design. The methodology used was to identify key characteristics of an existing baseline design and select the most accurate of those to construct a new design. This process was then applied over multiple designs and the results analysed and compared to determine the viability of the alternative design

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    A Systems Approach to Assurance of Safety, Security and Sustainability in Railways

    Get PDF
    • 

    corecore