18 research outputs found

    Flexible Scheduling in Middleware for Distributed rate-based real-time applications - Doctoral Dissertation, May 2002

    Get PDF
    Distributed rate-based real-time systems, such as process control and avionics mission computing systems, have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time overhead. However, static scheduling is brittle in the face of unanticipated overload, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources are often under-utilized in the average case, and the resulting systems are hard to adapt to meet new real-time processing requirements. Dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling often has a high run-time cost because certain decisions are enforced on-line. Furthermore, under conditions of overload tasks can be scheduled dynamically that may never be dispatched, or that upon dispatch would miss their deadlines. We review the implications of these factors on rate-based distributed systems, and posits the necessity to combine static and dynamic approaches to exploit the strengths and compensate for the weakness of either approach in isolation. We present a general hybrid approach to real-time scheduling and dispatching in middleware, that can employ both static and dynamic components. This approach provides (1) feasibility assurance for the most critical tasks, (2) the ability to extend this assurance incrementally to operations in successively lower criticality equivalence classes, (3) the ability to trade off bounds on feasible utilization and dispatching over-head in cases where, for example, execution jitter is a factor or rates are not harmonically related, and (4) overall flexibility to make more optimal use of scarce computing resources and to enforce a wider range of application-specified execution requirements. This approach also meets additional constraints of an increasingly important class of rate-based systems, those with requirements for robust management of real-time performance in the face of rapidly and widely changing operating conditions. To support these requirements, we present a middleware framework that implements the hybrid scheduling and dispatching approach described above, and also provides support for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation among several scheduling strategies to improve real-time performance in the face of changing operating conditions. Adaptive re-scheduling must be performed whenever operating conditions exceed the ability of the scheduling and dispatching infrastructure to meet the critical real-time requirements of the system under the currently specified rates and execution times of operations. Adaptive re-scheduling relies on the ability to change the rates of execution of at least some operations, and may occur under the control of a higher-level middleware resource manager. Different rates of execution may be specified under different operating conditions, and the number of such possible combinations may be arbitrarily large. Furthermore, adaptive rescheduling may in turn require notification of rate-sensitive application components. It is therefore desirable to handle variations in operating conditions entirely within the scheduling and dispatching infrastructure when possible. A rate-based distributed real-time application, or a higher-level resource manager, could thus fall back on adaptive re-scheduling only when it cannot achieve acceptable real-time performance through self-adaptation. Reflective alternation among scheduling heuristics offers a way to tune real-time performance internally, and we offer foundational support for this approach. In particular, run-time observable information such as that provided by our metrics-feedback framework makes it possible to detect that a given current scheduling heuristic is underperforming the level of service another could provide. Furthermore we present empirical results for our framework in a realistic avionics mission computing environment. This forms the basis for guided adaption. This dissertation makes five contributions in support of flexible and adaptive scheduling and dispatching in middleware. First, we provide a middle scheduling framework that supports arbitrary and fine-grained composition of static/dynamic scheduling, to assure critical timeliness constraints while improving noncritical performance under a range of conditions. Second, we provide a flexible dispatching infrastructure framework composed of fine-grained primitives, and describe how appropriate configurations can be generated automatically based on the output of the scheduling framework. Third, we describe algorithms to reduce the overhead and duration of adaptive rescheduling, based on sorting for rate selection and priority assignment. Fourth, we provide timely and efficient performance information through an optimized metrics-feedback framework, to support higher-level reflection and adaptation decisions. Fifth, we present the results of empirical studies to quantify and evaluate the performance of alternative canonical scheduling heuristics, across a range of load and load jitter conditions. These studies were conducted within an avionics mission computing applications framework running on realistic middleware and embedded hardware. The results obtained from these studies (1) demonstrate the potential benefits of reflective alternation among distinct scheduling heuristics at run-time, and (2) suggest performance factors of interest for future work on adaptive control policies and mechanisms using this framework

    An architecture for networked multimedia

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 45-46).by Jonathan C. Soo.M.Eng

    A distributed hard real-time Java system for high mobility components

    Get PDF
    In this work we propose a methodology for providing real-time capabilities to component-based, on-the-fly reconfigurable, distributed systems. In such systems, software components migrate across computational resources at run-time to allow applications to adapt to changes in user requirements or to external events. We describe how we achieve run-time reconfiguration in distributed Java applications by appropriately migrating servers. Guaranteed-rate schedulers at the servers provide the necessary temporal protection and so simplify remote method invocation management. We describe how we manage overhead and resource utilization by controlling the parameters of the server schedulers. According to our measurements, this methodology provides real-time capability to component-based reconfigurable distributed systems in an effcient and effective way. In addition, we propose a new resource discovery protocol, REALTOR, which is based on a combination of pull-based and push-based resource information dissemination. REALTOR has been designed for real-time component-based distributed applications in very dynamic or adverse environments. REALTOR supports survivability and information assurance by allowing the migration of components to safe locations under emergencies suchas externalattack, malfunction, or lackofresources. Simulation studies show that under normal and heavy load conditions REALTOR remains very effective in finding available resources, and does so with a reasonably low communication overhead.REALTOR 1)effectively locates resources under highly dynamic conditions, 2) has an overhead that is system-size independent, and 3) works well in highlyadverse environments.We evaluate the effectiveness of a REALTOR implementation as part of Agile Objects, an infrastructure for real-time capable, highly mobile Java components

    Performance Improvement of Multithreaded Java Applications Execution on Multiprocessor Systems

    Get PDF
    El disseny del llenguatge Java, que inclou aspectes importants com són la seva portabilitat i neutralitat envers l'arquitectura, les seves capacitats multithreading, la seva familiaritat (degut a la seva semblança amb C/C++), la seva robustesa, les seves capacitats en seguretat i la seva naturalesa distribuïda, fan que sigui un llenguatge potencialment interessant per ser utilitzat en entorns paral·lels com són els entorns de computació d'altes prestacions (HPC), on les aplicacions poden treure profit del suport que ofereix Java a l'execució multithreaded per realitzar càlculs en paral·lel, o en entorns e-business, on els servidors Java multithreaded (que segueixen l'especificació J2EE) poden treure profit de les capacitats multithreading de Java per atendre de manera concurrent un gran nombre de peticions.No obstant, l'ús de Java per la programació paral·lela ha d'enfrontar-se a una sèrie de problemes que fàcilment poden neutralitzar el guany obtingut amb l'execució en paral·lel. El primer problema és el gran overhead provocat pel suport de threads de la JVM quan s'utilitzen threads per executar feina de gra fi, quan es crea un gran nombre de threads per suportar l'execució d'una aplicació o quan els threads interaccionen estretament mitjançant mecanismes de sincronització. El segon problema és la degradació en el rendiment produïda quan aquestes aplicacions multithreaded s'executen en sistemes paral·lels multiprogramats. La principal causa d'aquest problemes és la manca de comunicació entre l'entorn d'execució i les aplicacions, la qual pot induir a les aplicacions a fer un ús descoordinat dels recursos disponibles.Aquesta tesi contribueix amb la definició d'un entorn per analitzar i comprendre el comportament de les aplicacions Java multithreaded. La contribució principal d'aquest entorn és que la informació de tots els nivells involucrats en l'execució (aplicació, servidor d'aplicacions, JVM i sistema operatiu) està correlada. Aquest fet és molt important per entendre com aquest tipus d'aplicacions es comporten quan s'executen en entorns que inclouen servidors i màquines virtuals, donat que l'origen dels problemes de rendiment es pot trobar en qualsevol d'aquests nivells o en la seva interacció.Addicionalment, i basat en el coneixement adquirit mitjançant l'entorn d'anàlisis proposat, aquesta tesi contribueix amb mecanismes i polítiques de planificació orientats cap a l'execució eficient d'aplicacions Java multithreaded en sistemes multiprocessador considerant les interaccions i la coordinació dels mecanismes i les polítiques de planificació en els diferents nivells involucrats en l'execució. La idea bàsica consisteix en permetre la cooperació entre les aplicacions i l'entorn d'execució en la gestió de recursos establint una comunicació bi-direccional entre les aplicacions i el sistema. Per una banda, les aplicacions demanen a l'entorn d'execució la quantitat de recursos que necessiten. Per altra banda, l'entorn d'execució pot ser inquirit en qualsevol moment per les aplicacions ser informades sobre la seva assignació de recursos. Aquesta tesi proposa que les aplicacions utilitzin la informació proporcionada per l'entorn d'execució per adaptar el seu comportament a la quantitat de recursos que tenen assignats (aplicacions auto-adaptables). Aquesta adaptació s'assoleix en aquesta tesi per entorns HPC per mitjà de la mal·leabilitat de les aplicacions, i per entorns e-business amb una proposta de control de congestió que fa control d'admissió basat en la diferenciació de connexions SSL per prevenir la degradació del rendiment i mantenir la Qualitat de Servei (QoS).Els resultats de l'avaluació demostren que subministrar recursos de manera dinàmica a les aplicacions auto-adaptables en funció de la seva demanda millora el rendiment de les aplicacions Java multithreaded tant en entorns HPC com en entorns e-business. Mentre disposar d'aplicacions auto-adaptables evita la degradació del rendiment, el subministrament dinàmic de recursos permet satisfer els requeriments de les aplicacions en funció de la seva demanda i adaptar-se a la variabilitat de les seves necessitats de recursos. D'aquesta manera s'aconsegueix una millor utilització dels recursos donat que els recursos que no utilitza una aplicació determinada poden ser distribuïts entre les altres aplicacions.The design of the Java language, which includes important aspects such as its portability and architecture neutrality, its multithreading facilities, its familiarity (due to its resemblance with C/C++), its robustness, its security capabilities and its distributed nature, makes it a potentially interesting language to be used in parallel environments such as high performance computing (HPC) environments, where applications can benefit from the Java multithreading support for performing parallel calculations, or e-business environments, where multithreaded Java application servers (i.e. following the J2EE specification) can take profit of Java multithreading facilities to handle concurrently a large number of requests.However, the use of Java for parallel programming has to face a number of problems that can easily offset the gain due to parallel execution. The first problem is the large overhead incurred by the threading support available in the JVM when threads are used to execute fine-grained work, when a large number of threads are created to support the execution of the application or when threads closely interact through synchronization mechanisms. The second problem is the performance degradation occurred when these multithreaded applications are executed in multiprogrammed parallel systems. The main issue that causes these problems is the lack of communication between the execution environment and the applications, which can cause these applications to make an uncoordinated use of the available resources.This thesis contributes with the definition of an environment to analyze and understand the behavior of multithreaded Java applications. The main contribution of this environment is that all levels in the execution (application, application server, JVM and operating system) are correlated. This is very important to understand how this kind of applications behaves when executed on environments that include servers and virtual machines, because the origin of performance problems can reside in any of these levels or in their interaction.In addition, and based on the understanding gathered using the proposed analysis environment, this thesis contributes with scheduling mechanisms and policies oriented towards the efficient execution of multithreaded Java applications on multiprocessor systems considering the interactions and coordination between scheduling mechanisms and policies at the different levels involved in the execution. The basis idea consists of allowing the cooperation between the applications and the execution environment in the resource management by establishing a bi-directional communication path between the applications and the underlying system. On one side, the applications request to the execution environment the amount of resources they need. On the other side, the execution environment can be requested at any time by the applications to inform them about their resource assignments. This thesis proposes that applications use the information provided by the execution environment to adapt their behavior to the amount of resources allocated to them (self-adaptive applications). This adaptation is accomplished in this thesis for HPC environments through the malleability of the applications, and for e-business environments with an overload control approach that performs admission control based on SSL connections differentiation for preventing throughput degradation and maintaining Quality of Service (QoS).The evaluation results demonstrate that providing resources dynamically to self-adaptive applications on demand improves the performance of multithreaded Java applications as in HPC environments as in e-business environments. While having self-adaptive applications avoids performance degradation, dynamic provision of resources allows meeting the requirements of the applications on demand and adapting to their changing resource needs. In this way, better resource utilization is achieved because the resources not used by some application may be distributed among other applications

    A HyperNet Architecture

    Get PDF
    Network virtualization is becoming a fundamental building block of future Internet architectures. By adding networking resources into the “cloud”, it is possible for users to rent virtual routers from the underlying network infrastructure, connect them with virtual channels to form a virtual network, and tailor the virtual network (e.g., load application-specific networking protocols, libraries and software stacks on to the virtual routers) to carry out a specific task. In addition, network virtualization technology allows such special-purpose virtual networks to co-exist on the same set of network infrastructure without interfering with each other. Although the underlying network resources needed to support virtualized networks are rapidly becoming available, constructing a virtual network from the ground up and using the network is a challenging and labor-intensive task, one best left to experts. To tackle this problem, we introduce the concept of a HyperNet, a pre-built, pre-configured network package that a user can easily deploy or access a virtual network to carry out a specific task (e.g., multicast video conferencing). HyperNets package together the network topology configuration, software, and network services needed to create and deploy a custom virtual network. Users download HyperNets from HyperNet repositories and then “run” them on virtualized network infrastructure much like users download and run virtual appliances on a virtual machine. To support the HyperNet abstraction, we created a Network Hypervisor service that provides a set of APIs that can be called to create a virtual network with certain characteristics. To evaluate the HyperNet architecture, we implemented several example Hyper-Nets and ran them on our prototype implementation of the Network Hypervisor. Our experiments show that the Hypervisor API can be used to compose almost any special-purpose network – networks capable of carrying out functions that the current Internet does not provide. Moreover, the design of our HyperNet architecture is highly extensible, enabling developers to write high-level libraries (using the Network Hypervisor APIs) to achieve complicated tasks
    corecore