11,688 research outputs found

    Efficient trajectory of a car-like mobile robot

    Full text link
    This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here https://riunet.upv.es/. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.[EN] Purpose The purpose is to create an algorithm that optimizes the trajectories that an autonomous vehicle must follow to reduce its energy consumption and reduce the emission of greenhouse gases. Design/methodology/approach An algorithm is presented that respects the dynamic constraints of the robot, including the characteristics of power delivery by the motor, the behaviour of the tires and the basic inertial parameters. Using quadratic sequential programming with distributed and non-monotonous search direction (Quadratic Programming Algorithm with Distributed and Non-Monotone Line Search), an optimization algorithm proposed and developed by Professor K. Schittkowski is implemented. Findings Relations between important operating variables have been obtained, such as the evolution of the autonomous vehicle's velocity, the driving torque supplied by the engine and the forces acting on the tires. In a subsequent analysis, the aim is to analyse the relationship between trajectory made and energy consumed and calculate the reduction of greenhouse gas emissions. Also this method has been checked against another different methodology commented on in the references. Research limitations/implications The main limitation comes from the modelling that has been done. As greater is the mechanical systems analysed, more simplifying hypotheses should be introduced to solve the corresponding equations with the current computers. However, the solutions are obtained and they can be used qualitatively to draw conclusions. Practical implications One main objective is to obtain guidelines to reduce greenhouse gas emissions by reducing energy consumption in the realization of autonomous vehicles' trajectories. The first step to achieve that is to obtain a good model of the autonomous vehicle that takes into account not only its kinematics but also its dynamic properties, and to propose an optimization process that allows to minimize the energy consumed. In this paper, important relationships between work variables have been obtained. Social implications The idea is to be friendly with nature and the environment. This algorithm can help by reducing an instance of greenhouse gases. Originality/value Originality comes from the fact that we not only look for the autonomous vehicle's modelling, the simulation of its motion and the analysis of its working parameters, but also try to obtain from its working those guidelines that are useful to reduce the energy consumed and the contamination capability of these autonomous vehicles or car-like robots.Valero Chuliá, FJ.; Rubio Montoya, FJ.; Besa Gonzálvez, AJ.; Llopis Albert, C. (2019). Efficient trajectory of a car-like mobile robot. Industrial Robot An International Journal. 46(2):211-222. https://doi.org/10.1108/IR-10-2018-0214S211222462Ghita, N., & Kloetzer, M. (2012). Trajectory planning for a car-like robot by environment abstraction. Robotics and Autonomous Systems, 60(4), 609-619. doi:10.1016/j.robot.2011.12.004Katrakazas, C., Quddus, M., Chen, W.-H., & Deka, L. (2015). Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation Research Part C: Emerging Technologies, 60, 416-442. doi:10.1016/j.trc.2015.09.011Li, B., & Shao, Z. (2015). Simultaneous dynamic optimization: A trajectory planning method for nonholonomic car-like robots. Advances in Engineering Software, 87, 30-42. doi:10.1016/j.advengsoft.2015.04.011Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. doi:10.1016/j.robot.2016.09.008Rubio, F., Valero, F., Lluís Sunyer, J., & Garrido, A. (2010). The simultaneous algorithm and the best interpolation function for trajectory planning. Industrial Robot: An International Journal, 37(5), 441-451. doi:10.1108/01439911011063263Sariff, N., & Buniyamin, N. (2006). An Overview of Autonomous Mobile Robot Path Planning Algorithms. 2006 4th Student Conference on Research and Development. doi:10.1109/scored.2006.4339335Renny Simba, K., Uchiyama, N., & Sano, S. (2016). Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robotics and Computer-Integrated Manufacturing, 41, 31-42. doi:10.1016/j.rcim.2016.02.002Tokekar, P., Karnad, N., & Isler, V. (2014). Energy-optimal trajectory planning for car-like robots. Autonomous Robots, 37(3), 279-300. doi:10.1007/s10514-014-9390-

    Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot

    Full text link
    [EN] A collision-free trajectory planner for a car-like mobile robot moving in complex environments is introduced and the influence of the coefficient of friction on important working parameters is analyzed. The proposed planner takes into account not only the dynamic capabilities of the robot but also the behaviour of the tire. This planner is based on sequential quadratic programming algorithms and the normalized time method. Different values for the coefficient of friction have been taken following a normal Gaussian distribution to see its influence on the working parameters. The algorithm has been applied to several examples and the results show that computation times are compatible with real-time work, so the authors call them efficient generated trajectories as they avoid collisions. Besides, working parameters such as the minimum trajectory time, the maximum vehicle speed, computational time, and consumed energy have been monitored and some conclusions have been reached.This work was supportedby the Spanish Ministryof Economy and Competitiveness, which has funded the DPI2013-44227R project.Valero Chuliá, FJ.; Rubio Montoya, FJ.; Llopis Albert, C.; Cuadrado Iglesias, JI. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering. (4562647):1-9. https://doi.org/10.1155/2017/4562647S19456264

    On Time-optimal Trajectories for a Car-like Robot with One Trailer

    Full text link
    In addition to the theoretical value of challenging optimal control problmes, recent progress in autonomous vehicles mandates further research in optimal motion planning for wheeled vehicles. Since current numerical optimal control techniques suffer from either the curse of dimens ionality, e.g. the Hamilton-Jacobi-Bellman equation, or the curse of complexity, e.g. pseudospectral optimal control and max-plus methods, analytical characterization of geodesics for wheeled vehicles becomes important not only from a theoretical point of view but also from a prac tical one. Such an analytical characterization provides a fast motion planning algorithm that can be used in robust feedback loops. In this work, we use the Pontryagin Maximum Principle to characterize extremal trajectories, i.e. candidate geodesics, for a car-like robot with one trailer. We use time as the distance function. In spite of partial progress, this problem has remained open in the past two decades. Besides straight motion and turn with maximum allowed curvature, we identify planar elastica as the third piece of motion that occurs along our extr emals. We give a detailed characterization of such curves, a special case of which, called \emph{merging curve}, connects maximum curvature turns to straight line segments. The structure of extremals in our case is revealed through analytical integration of the system and adjoint equations

    Use of technical computing systems in the context of engineering problems

    Full text link
    [EN] This paper presents a teaching innovation project based on applying technical computing systems as a resource to improve learning in the classroom and as a way of evaluating transversal competences (TC). By these means, students analyze complex kinematic and dynamic mechanical systems in the context of the subject Dynamics of Mechanical Systems of the Master’s Degree in Mechatronics Engineering at Universitat Politècnica de València (Spain). We have observed that the use of such tools improves the students learning on the contents of the subject, allows to acquire the transversal competence related to the analysis and problem solving, and enhances the ability to understand concepts intuitively. Furthermore, results clearly show a positive influence on the use of such tools for improving the professional and ethical commitment to the issues raised.Llopis Albert, C.; Rubio Montoya, FJ.; Valle-Falcones, L.; Grima-Olmedo, C. (2020). Use of technical computing systems in the context of engineering problems. Multidisciplinary Journal for Education, Social and Technological Sciences. 7(2):84-99. https://doi.org/10.4995/muse.2020.14283OJS849972Artobolevsky, I.I. 1975. Mechanisms in Modern Engineering Design: A Handbook for Engineers, Designers and Inventors. Seven books. Mir Pubblishers, Moscow.Bloom, B.S. 1956. Taxonomy of Educational Objectives: The Classification of Educational Goals. David McKay Company, p. 201-7.Llopis-Albert, C., Rubio, F., Valero, F. 2015. Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68 (7), 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027Llopis-Albert, C., Rubio, F., Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867Llopis-Albert, C., Rubio, F., Valero, F. (2019). Fuzzy-set qualitative comparative analysis applied to the design of a network flow of automated guided vehicles for improving business productivity. Journal of Business Research, 101, 737-742. https://doi.org/10.1016/j.jbusres.2018.12.076Llopis-Albert, C., Rubio, F., Valero, F., Liao, H., Zeng, S. 2019a. Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express, 6(11), 115806. https://doi.org/10.1088/2053-1591/ab4c72Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J.L., Zamora-Ortiz, P., Escarabajal, R.J. 2020. Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. https://doi.org/10.3390/su12145803Llopis-Albert, C., Valero, F., Mata, V., Zamora-Ortiz, P., Escarabajal, R.J., Pulloquinga, J.L. 2020a. Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113-127. https://doi.org/10.4995/muse.2020.13352Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. 2015. Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 10 pages. Article ID 931048. https://doi.org/10.1155/2015/931048Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. 2016. Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008Rubio, F., Llopis-Albert, C. 2019. Viability of using wind turbines for electricity generation in electric vehicles. Multidisciplinary Journal for Education, Social and Technological Sciences, 6(1), 115-126. https://doi.org/10.4995/muse.2019.11743Rubio, F., Valero, F., & Llopis-Albert, C. 2019a. A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596SolidWorks software. 2020. Dassault Systèmes SolidWorks Corporation. 175 Wyman Street Waltham, MA 02451, USA. https://www.solidworks.com/UPV, 2020. Proyecto institucional competencias transversales. Universitat Politècnica de València (UPV). Valencia. Spain. https://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdfWolfram Mathematica software. 2020. The Wolfram Centre. Lower Road, Long Hanborough. Oxfordshire OX29 8FD, United Kingdom. https://www.wolfram.com/mathematica/Valero, F., Rubio, F., Llopis-Albert, C., Cuadrado, J.I. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 9 pages. Article ID 4562647. https://doi.org/10.1155/2017/4562647Valero, F., Rubio, F., Llopis-Albert, C. 2019. Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407Valero, F., Rubio, F., Besa, A.J. 2019a. Efficient trajectory of a car-like mobile robot. Industrial Robot: the international journal of robotics research and application, 46(2), 211-222. https://doi.org/10.1108/IR-10-2018-021

    Methodology to evaluate transversal competences in the master's degree in industrial engineering based on a system of rubrics and indicators

    Full text link
    [EN] This paper presents a methodology to evaluate transversal competences in the context of the subject “Design and application of industrial equipment” in the Master's Degree in Industrial Engineering at Universitat Politècnica de València (Spain). The competency-based education implies several activities, such as a project-based learning that must be eventually defended in public by students in groups. Evidence of learning is collected based on a well-defined system of rubrics and indicators, which are known in advance by students. We have observed that the use of such techniques improves the students learning on the contents of the subject, allows to acquire the transversal competences related to the analysis and problem solving, and enhances the ability to understand concepts intuitively. Moreover, results clearly show a positive influence on the use of such tools for improving the professional and ethical commitment to the issues raised.Llopis-Albert, C.; Rubio, F. (2021). Methodology to evaluate transversal competences in the master's degree in industrial engineering based on a system of rubrics and indicators. Multidisciplinary Journal for Education, Social and Technological Sciences. 8(1):30-44. https://doi.org/10.4995/muse.2021.15244OJS304481Eberle, B. (1996). Scamper: Games for Imagination Development. Prufrock Press Inc. ISBN 978-1-882664-24-5.Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68 (7), 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027Llopis-Albert, C., Rubio, F., Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867Llopis-Albert, C., Rubio, F., Valero, F. (2019). Fuzzy-set qualitative comparative analysis applied to the design of a network flow of automated guided vehicles for improving business productivity. Journal of Business Research, 101, 737-742. https://doi.org/10.1016/j.jbusres.2018.12.076Llopis-Albert, C., Rubio, F., Valero, F., Liao, H., Zeng, S. (2019a). Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express, 6(11), 115806. https://doi.org/10.1088/2053-1591/ab4c72Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J.L., Zamora-Ortiz, P., Escarabajal, R.J. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. https://doi.org/10.3390/su12145803Llopis-Albert, C., Valero, F., Mata, V., Zamora-Ortiz, P., Escarabajal, R.J., Pulloquinga, J.L. (2020a). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113-127. https://doi.org/10.4995/muse.2020.13352Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. (2015). Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 10 pages. Article ID 931048. https://doi.org/10.1155/2015/931048Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008Rubio, F., Llopis-Albert, C. (2019). Viability of using wind turbines for electricity generation in electric vehicles. Multidisciplinary Journal for Education, Social and Technological Sciences, 6(1), 115-126. https://doi.org/10.4995/muse.2019.11743Rubio, F., Valero, F., & Llopis-Albert, C. (2019a). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596Rubio, F., Llopis-Albert, C., Valero, F., Besa, A.J. (2020). Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. Journal of Business Research 112, 561-566. https://doi.org/10.1016/j.jbusres.2019.10.050UPV, 2020. Proyecto institucional competencias transversales. Universitat Politècnica de València (UPV). Valencia. Spain. https://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdfValero, F., Rubio, F., Llopis-Albert, C., Cuadrado, J.I. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 9 pages. Article ID 4562647. https://doi.org/10.1155/2017/4562647Valero, F., Rubio, F., Llopis-Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407Valero, F., Rubio, F., Besa, A.J. (2019a). Efficient trajectory of a car-like mobile robot. Industrial Robot: the international journal of robotics research and application, 46(2), 211-222. https://doi.org/10.1108/IR-10-2018-021

    Assistive trajectories for human-in-the-loop mobile robotic platforms

    Get PDF
    Autonomous and semi-autonomous smoothly interruptible trajectories are developed which are highly suitable for application in tele-operated mobile robots, operator on-board military mobile ground platforms, and other mobility assistance platforms. These trajectories will allow a navigational system to provide assistance to the operator in the loop, for purpose built robots or remotely operated platforms. This will allow the platform to function well beyond the line-of-sight of the operator, enabling remote operation inside a building, surveillance, or advanced observations whilst keeping the operator in a safe location. In addition, on-board operators can be assisted to navigate without collision when distracted, or under-fire, or when physically disabled by injury

    Nonholonomic motion planning: steering using sinusoids

    Get PDF
    Methods for steering systems with nonholonomic constraints between arbitrary configurations are investigated. Suboptimal trajectories are derived for systems that are not in canonical form. Systems in which it takes more than one level of bracketing to achieve controllability are considered. The trajectories use sinusoids at integrally related frequencies to achieve motion at a given bracketing level. A class of systems that can be steered using sinusoids (claimed systems) is defined. Conditions under which a class of two-input systems can be converted into this form are given
    • …
    corecore