114,607 research outputs found

    Efficient tracking of a growing number of experts

    Get PDF
    International audienceWe consider a variation on the problem of prediction with expert advice, where new forecasters that were unknown until then may appear at each round. As often in prediction with expert advice, designing an algorithm that achieves near-optimal regret guarantees is straightforward, using ag-gregation of experts. However, when the comparison class is sufficiently rich, for instance when the best expert and the set of experts itself changes over time, such strategies naively require to maintain a prohibitive number of weights (typically exponential with the time horizon). By contrast, designing strategies that both achieve a near-optimal regret and maintain a reasonable number of weights is highly non-trivial. We consider three increasingly challenging objectives (simple regret, shifting regret and sparse shifting regret) that extend existing notions defined for a fixed expert ensemble; in each case, we design strategies that achieve tight regret bounds, adaptive to the parameters of the comparison class, while being computationally inexpensive. Moreover, our algorithms are anytime , agnostic to the number of incoming experts and completely parameter-free. Such remarkable results are made possible thanks to two simple but highly effective recipes: first the " abstention trick " that comes from the specialist framework and enables to handle the least challenging notions of regret, but is limited when addressing more sophisticated objectives. Second, the " muting trick " that we introduce to give more flexibility. We show how to combine these two tricks in order to handle the most challenging class of comparison strategies

    Electronic Health Records and Support For Primary Care Teamwork

    Get PDF
    This study examined primary care practices' experiences using electronic health records (EHRs) as they strive to function as teams in patientcentered medical homes (PCMHs). We identify how EHRs facilitate and pose challenges to teamwork and how practices overcame such challenges. We describe solutions and identify opportunities to improve care processes as well as EHR functionalities and policies, to support teamwork

    Random Feature-based Online Multi-kernel Learning in Environments with Unknown Dynamics

    Get PDF
    Kernel-based methods exhibit well-documented performance in various nonlinear learning tasks. Most of them rely on a preselected kernel, whose prudent choice presumes task-specific prior information. Especially when the latter is not available, multi-kernel learning has gained popularity thanks to its flexibility in choosing kernels from a prescribed kernel dictionary. Leveraging the random feature approximation and its recent orthogonality-promoting variant, the present contribution develops a scalable multi-kernel learning scheme (termed Raker) to obtain the sought nonlinear learning function `on the fly,' first for static environments. To further boost performance in dynamic environments, an adaptive multi-kernel learning scheme (termed AdaRaker) is developed. AdaRaker accounts not only for data-driven learning of kernel combination, but also for the unknown dynamics. Performance is analyzed in terms of both static and dynamic regrets. AdaRaker is uniquely capable of tracking nonlinear learning functions in environments with unknown dynamics, and with with analytic performance guarantees. Tests with synthetic and real datasets are carried out to showcase the effectiveness of the novel algorithms.Comment: 36 page
    • …
    corecore