33,305 research outputs found

    Occlusion reasoning for multiple object visual tracking

    Full text link
    Thesis (Ph.D.)--Boston UniversityOcclusion reasoning for visual object tracking in uncontrolled environments is a challenging problem. It becomes significantly more difficult when dense groups of indistinguishable objects are present in the scene that cause frequent inter-object interactions and occlusions. We present several practical solutions that tackle the inter-object occlusions for video surveillance applications. In particular, this thesis proposes three methods. First, we propose "reconstruction-tracking," an online multi-camera spatial-temporal data association method for tracking large groups of objects imaged with low resolution. As a variant of the well-known Multiple-Hypothesis-Tracker, our approach localizes the positions of objects in 3D space with possibly occluded observations from multiple camera views and performs temporal data association in 3D. Second, we develop "track linking," a class of offline batch processing algorithms for long-term occlusions, where the decision has to be made based on the observations from the entire tracking sequence. We construct a graph representation to characterize occlusion events and propose an efficient graph-based/combinatorial algorithm to resolve occlusions. Third, we propose a novel Bayesian framework where detection and data association are combined into a single module and solved jointly. Almost all traditional tracking systems address the detection and data association tasks separately in sequential order. Such a design implies that the output of the detector has to be reliable in order to make the data association work. Our framework takes advantage of the often complementary nature of the two subproblems, which not only avoids the error propagation issue from which traditional "detection-tracking approaches" suffer but also eschews common heuristics such as "nonmaximum suppression" of hypotheses by modeling the likelihood of the entire image. The thesis describes a substantial number of experiments, involving challenging, notably distinct simulated and real data, including infrared and visible-light data sets recorded ourselves or taken from data sets publicly available. In these videos, the number of objects ranges from a dozen to a hundred per frame in both monocular and multiple views. The experiments demonstrate that our approaches achieve results comparable to those of state-of-the-art approaches

    Optimization in railway timetabling for regional and intercity trains in Zealand: A case of study of DSB

    Get PDF
    The Train Timetabling Problem is one of the main tactical problems in the railway planning process. Depending on the size of the network, the problem can be hard to solve directly and alternative methods should be studied. In this thesis, the Train Timetabling Problem is formulated using a graph formu-lation that takes advantage of the symmetric timetabling strategy and assumed fixed running times between station. The problem is formulated for the morning rush hour period of the Regional and InterCity train network of Zealand. The solution method implemented is based on a Large Neighborhood Search model that iteratively applies a dive-and-cut-and-price procedure. An LP relax version of the problem is solved using Column Generation considering only a subset of columns and constraints. Each column corresponds to the train paths of a line that are found by shortest paths in the graphs. Then, violated constraints are added by separation and an heuristic process is applied to help finding integer solutions. Last, the passengers are routed on the network based on the found timetable and the passenger travel time calculated. The process is repeated taking into account the best transfers from the solution found. A parameter tuning is conducted to find the best algorithm setting. Then, the model is solved for different scenarios where the robustness and quality of the solution is analyzed. The model shows good performance in most of the scenarios being able to find good quality solutions relatively fast. The way the best transfers are considered between timetable solutions does not add significant value in terms of solution quality but could be useful from a planning perspective. In addition, most of the real-life conflicts are taken into account in the model but not all of them. As a result, the model can still be improved in order to provide completely conflict-free timetables. In general, the model appears to be useful for the timetabling planning process of DSB. It allows to test different network requirements and preferences easily. The model not only generates a timetable but also estimates the passenger travel time and the occupancy of the trains quite accurately. Also, any modification in the line plan can easily be included without affecting the core model.Outgoin

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Improving Global Multi-target Tracking with Local Updates

    Get PDF
    Conference dates: September 6-7 & 12, 2014We propose a scheme to explicitly detect and resolve ambiguous situations in multiple target tracking. During periods of uncertainty, our method applies multiple local single target trackers to hypothesise short term tracks. These tracks are combined with the tracks obtained by a global multi-target tracker, if they result in a reduction in the global cost function. Since tracking failures typically arise when targets become occluded, we propose a local data association scheme to maintain the target identities in these situations. We demonstrate a reduction of up to 50% in the global cost function, which in turn leads to superior performance on several challenging benchmark sequences. Additionally, we show tracking results in sports videos where poor video quality and frequent and severe occlusions between multiple players pose difficulties for state-of-the-art trackers.Anton Milan, Rikke Gade, Anthony Dick, Thomas B. Moeslund, and Ian Rei

    Institutional Cognition

    Get PDF
    We generalize a recent mathematical analysis of Bernard Baars' model of human consciousness to explore analogous, but far more complicated, phenomena of institutional cognition. Individual consciousness is limited to a single, tunable, giant component of interacting cogntivie modules, instantiating a Global Workspace. Human institutions, by contrast, seem able to multitask, supporting several such giant components simultaneously, although their behavior remains constrained to a topology generated by cultural context and by the path-dependence inherent to organizational history. Surprisingly, such multitasking, while clearly limiting the phenomenon of inattentional blindness, does not eliminate it. This suggests that organizations (or machines) explicitly designed along these principles, while highly efficient at certain sets of tasks, would still be subject to analogs of the subtle failure patterns explored in Wallace (2005b, 2006). We compare and contrast our results with recent work on collective efficacy and collective consciousness
    • …
    corecore